

«The elaboration of effective methods of obtaining of the new heat-proofing matrix polymeric nanostructured composites V.M.Novotortsev, I.L.eremenko, A.M.Muzafarov

Research group:

- Institute of General and Inorganic Chemistry RAS
- Institute of Synthetic Polymer Materials RAS
- Experimental Machinebuilding Enterprise Korolev Rocket And Corporation "Energia"
- STC Nanotechnology Ltd.

Such materials can be suitable for the thermal protection landing module spacecraft or for creation of the construction of elements orbital stations and airplanes

Produced descriptions to composition material	World analogues	New composition material
tensile strength, kg/sm ²	200	220
breaking stress in static bending, kg/sm ²	400	440
operating temperature (for ablative materials)	up to 2000°C	above 2000°C
linear thermal expansion coefficient, 1/°C	from 8·10 ⁻⁶ to 9·10 ⁻⁶	from 7·10 ⁻⁶ to 8·10 ⁻⁶
thermal conductivity in the direction of normal to the work face, $kcal/(C\cdot c)$	0,62 ·10 ⁻⁴	0,61– 0,62·10 ⁻⁴

