на правах рукописи

ТЮРИН АЛЕКСАНДР ВЛАДИМИРОВИЧ

Синтез и термодинамические свойства фаз в системах A^{III} - B^{VI} (A = In, Ga; B = Se, Te)

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва - 2013

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук.

Научный руководитель:	доктор химических наук Гавричев Константин Сергеевич		
Официальные оппоненты:	доктор химических наук, профессор Алиханян Андрей Сосович (Институт общей и неорганической химии им. Н.С. Курнакова РАН)		
	доктор химических наук, профессор Коробов Михаил Валерьевич (МГУ им. М.В. Ломоносова, Химический факультет)		
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского»		

Защита состоится «10» декабря 2013 г. в 11 часов на заседании диссертационного совета Д 002.021.02 в Институте общей и неорганической химии им. Н.С. Курнакова РАН по адресу: 119991, ГСП-1, Москва, Ленинский проспект, 31.

С диссертацией можно ознакомится в библиотеке ИОНХ РАН по адресу: г. Москва, Ленинский проспект, 31. Ознакомиться с авторефератом можно на сайте www.igic.ras.ru и на сайте ВАК РФ.

Автореферат разослан «8» ноября 2013 г.

Ученый секретарь Диссертационного совета, кандидат химических наук, доцент

Очертянова Л.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u>. Полупроводниковые соединения $A^{III}B^{VI}$ (A = In, Ga; B = Se, Te) находят применение в различных областях техники, в частности, в пьезоэлектронике, детекторах радиационного излучения, солнечных батареях, а также для легирования полупроводников, например, группы $A^{IV}B^{VI}$. Халькогениды индия и галлия (In₂Te₃, Ga₂Te₃, Ga₂Se₃) обладают радиационным ресурсом в сотни и тысячи раз большим, чем классические полупроводники, такие как германий, кремний, соединения $A^{III}B^{V}$ и $A^{II}B^{VI}$. В частности, они не изменяют свои физические характеристики после воздействия флюенсов порядка 10^{16} быстрых нейтронов на квадратный сантиметр.

Развитие современного материаловедения диктует необходимость разработки методов управляемого синтеза бинарных соединений с заданным составом, структурой, химическими связями и, как следствие, свойствами. Основой для такого синтеза является информация об условиях равновесия, термодинамических свойствах фаз в соответствующей системе, а также особенностях структуры. Однако условия синтеза, теплоемкость и термодинамические свойства фаз в системах Ga – Se, Ga – Te, In – Se, In – Te либо не изучены, либо изучены недостаточно.

С учетом изложенного выше, <u>цель работы</u> состояла в получении комплекса точных и надежных данных по термодинамическим свойствам фаз в системах Ga – Se, Ga – Te, In – Se, In – Te.

Для достижения цели требовалось выполнение следующих <u>задач</u>: 1. усовершенствование условий синтеза фаз в системах Ga – Se, Ga – Te, In – Se, In – Te.

2. экспериментальное определение теплоемкости селенидов и теллуридов элементов третьей группы в широком интервале температур.

3. получение численных значений термодинамических функций в изученном температурном диапазоне.

4. определение характеристической температуры, размерности структуры и возможности использования фрактальной модели для описания температурной зависимости теплоемкости.

Научная новизна. В работе:

1. уточнена методика синтеза селенидов и теллуридов индия и галлия из расплава.

2. методом вакуумной адиабатической калориметрии определена их низкотемпературная теплоемкость.

3. для монотеллурида индия InTe проведено изучение теплоемкости в области высоких температур с помощью дифференциального сканирующего калориметра DSC111 SETARAM. Полученная методом дифференциальной сканирующей калориметрии (ДСК) кривая $C_p(T)$ удовлетворительно согласуется с данными низкотемпературных измерений и экстраполирующей зависимостью по уравнению DEK.

4. для теллурида галлия Ga_2Te_3 дополнительно проведено изучение теплоемкости в области гелиевых температур методом релаксационной калориметрии на установке исследования физических свойств материалов Quantum Design PPMS 9. Отмечено хорошее согласование с данными низкотемпературной адиабатической калориметрии и отсутствие фазовых переходов до 2 К.

5. для теллурида галлия Ga₂Te₃, селенидов индия и галлия InSe и GaSe дополнительно проведено изучение теплоемкости и термического поведения в области высоких температур методом дифференциальной сканирующей калориметрии на установке синхронного термического анализа STA 449 F1 Jupiter ® фирмы Netzsch.

6 описания низкотемпературной теплоемкости, лля оценки характеристической температуры И выявления преимущественных в структуре (слои, цепи) мотивов изученных полупроводниковых соединений использована фрактальная модель.

7. с использованием сплайн-аппроксимации выполнено сглаживание кривых $C_p(T)$ и рассчитаны термодинамические функции (энтропия S^0 , изменение энтальпии $H^0(298.15 \text{ K}) - H^0(0)$ и приведенная энергия Гиббса Φ^0) для GaSe, Ga₂Se₃, GaTe, Ga₂Te₃, InSe, InTe.

8. рассмотрены факторы, влияющие на изменение термодинамических свойств (энтальпии образования $\Delta_{f}H^{0}$, стандартной энтропии S⁰(298.15 K)) в рядах халькогенидов индия и галлия $A^{III}B^{VI}$ и $A^{III}_{2}B^{VI}_{3}$ ($A^{III} = Ga$, In; $B^{VI} = S$, Se, Te).

Практическая значимость.

1. полученные данные по теплоемкости, термодинамическим функциям имеют высокую точность и достоверность и могут быть использованы в банках данных и справочных изданиях.

2. модели описания теплоемкости в области низких температур позволяют оценить частоты колебаний решетки и характеристические температуры изученных фаз.

<u>Объекты исследования</u>: полупроводниковые соединения группы $A^{III}B^{VI}$ (селениды галлия GaSe и Ga₂Se₃, теллуриды галлия GaTe и Ga₂Te₃, селенид индия InSe, теллурид индия InTe).

Основные методы получения и исследования:

1. синтез материалов проводили прямым сплавлением в вакуумированных кварцевых ампулах.

2. кристаллы выращивали из расплава методом Бриджмена.

3. идентификация структуры и фазового состава соединений проводилась рентгеновскими методами анализа.

4. теплоемкость измерялась методами: а) вакуумной низкотемпературной адиабатической калориметрии, б) релаксационной калориметрии, в) дифференциальной сканирующей калориметрии.

5. для расчетов применены современная вычислительная техника и апробированные методы обработки данных.

6. оценку достоверности результатов проводили методами математической статистики.

Положения, выносимые на защиту:

• результаты экспериментального исследования низкотемпературной теплоемкости и термодинамических свойств шести неорганических соединений (GaSe, Ga₂Se₃, GaTe, Ga₂Te₃, InSe, InTe) с использованием метода адиабатической калориметрии и релаксационной калориметрии.

• результаты экспериментального определения высокотемпературной теплоемкости GaSe, Ga₂Te₃, InSe и InTe, с использованием дифференциальной сканирующей калориметрии.

• температурные зависимости термодинамических свойств изученных соединений в широком интервале температур.

• характеристические температуры и фрактонные размерности, отражающие выраженные особенности в кристаллической структуре халькогенидов индия и галлия.

<u>Личный вклад автора</u> заключался в планировании и проведении эксперимента, синтезе и диагностике образцов, измерении низкотемпературной теплоемкости, обработке полученных результатов, их интерпретации, написании статей и диссертации.

Диссертация соответствует паспорту специальности физическая химия – 02.00.04 по пункту 2 «Экспериментальное определение термодинамических свойств веществ, расчет термодинамических функций

простых и сложных систем, в том числе на основе методов статистической термодинамики, изучение термодинамики фазовых превращений и фазовых переходов».

Апробация работы. Материалы диссертации докладывались на 8 конференциях, в том числе международных: 1) XIV Международная конференция по химической термодинамике. Тез. докладов. Санкт-Петербург 2002. С.202. 2) Thermodynamics of alloys (TOFA-2002), Рим (Италия), 8-13 октября 2002. Р.71. 3) Герасимовские чтения, М., МГУ, 29 - 30 сент. 2003, Р II-13. 4) Высокочистые вещества и материалы: получение, анализ, применение. Нижний Новгород, 31 мая - 3 июня 2004. Тез. докладов XII конференции. С.86. 5) Международная конференция по химической термодинамике в России, 27 июня - 2 июля 2005. Тез. докладов, Т.1. Москва, 2005. С.57. 6) XVI International conference on chemical thermodynamics in Russia. Abstracts, Суздаль, 2007, Vol.1. P.2/S-150. 7) II конференция молодых ученых по общей и неорганической химии. Тез. докладов. Москва, 2012. С. 64. 8) XIV Международная конференция по термическому анализу и калориметрии в России (RTAC - 2013), 23 – 28 сент. 2013. С. 199.

Публикации. По теме диссертации опубликовано 6 статей в российских рецензируемых журналах, рекомендованных перечнем ВАК, а также 8 тезисов докладов на российских и международных конференциях.

<u>Структура работы</u>. Диссертация состоит из введения, пяти глав, выводов, списка литературы, пяти приложений.

Во введении обоснована актуальность работы, определен выбор объектов, дана краткая характеристика изученных соединений. Глава 1 представляет собой обзор литературных данных. Глава 2 посвящена изложению методики проведения эксперимента. В главе 3 представлены методика обработки данных калориметрии и расчета термодинамических функций. Описание данных по низкотемпературной теплоемкости и структуры с помощью модели фракталов приведено в главе 4. Глава 5 посвящена обсуждению полученных результатов, анализу факторов, на изменение термодинамических свойств (энтальпии влияющих образования $\Delta_{\rm f} H^0$, стандартной энтропии $S^0(298.15 \, {\rm K}))$ в рядах халькогенидов индия и галлия $A^{III}B^{VI}$ и $A^{III}_{2}B^{VI}_{3}$ ($A^{III} = Ga$, In; $B^{VI} = S$, Se, Te).

. <u>Объем работы</u>. Работа изложена на 203 страницах и содержит 17 таблиц, 73 рисунка, 132 наименования цитируемой литературы.

СОДЕРЖАНИЕ РАБОТЫ

Введение

Во введении дается общая характеристика работы, включая ее цели и актуальность.

I. Обзор литературы

Первая глава представляет собой обзор литературы. В ней описаны Т-х проекции фазовых диаграмм систем Ga-Se, Ga-Te, In-Se, In-Te, кристаллическая структура и термодинамические свойства фаз в указанных системах. В конце обзора каждой из четырех систем приведены выводы и постановка задачи исследования.

II. Экспериментальная часть

Вторая глава посвящена уточнению методики синтеза образцов и их диагностике. В ней приведено описание калориметров, изменений, внесенных в их конструкцию и усовершенствований методики измерения теплоемкости.

2.1. Уточнение методов синтеза и диагностика образцов халькогенидов элементов третьей группы.

B обзоре литературы отмечено, что часть образцов, использовавшихся разными авторами для термодинамических исследований (в частности, в системе In – Те) были не однофазны. Синтез теллуридов и, в большей степени, селенидов осложняется большим давлением пара халькогена. В связи с этим для получения однофазных образцов в методику их подготовки для изучения теплоемкости был введен улучшений. В частности, образцы изготавливались В ряд виле монокристаллов, что способствовало повышению их однородности. В соответствии с Т-х проекциями р-Т-х фазовых диаграмм для синтеза выбирались температуры и составы, отвечающие стабильным при комнатных температурах политипам. Поскольку из обзора литературы известно, что GaSe, Ga₂Se₃, GaTe, Ga₂Te₃, InSe и InTe плавятся когрузнтно и области гомогености включают стехиометричесие составы, то для синтеза образцов бралась смесь, соответствующая стехиометрическим количествам компонентов (например, 2Ga+3Se в синтезе Ga₂Se₃). Монотеллурид индия InTe кристаллизуется при температуре 969 К в тетрагональной сингонии (только при высоких температурах и давлении переходит из тетрагональной (I) в кубическую (II) модификацию типа

NaCl). Термодинамически наиболее устойчивым политипом моноселенида галлия GaSe является є-политип, кристаллизующийся при 1210 К в гексагональной сингонии. Селенид и теллурид галлия α-Ga₂Se₃ и $(T_m = 1280)$ имеют структуру сфалерита Κ И 1065 K. α -Ga₂Te₃ соответственно). Монотеллурид галлия GaTe имеет метастабильную гексагональную α модификацию и термодинамически устойчивый βполитип моноклинной сингонии, кристаллизующийся при температуре 1099 К. Стабильный политип селенида индия β-InSe имеет гексагональную сингонию (T_m=933 K). Гомогенизация расплава достигалась повышением температуры так, чтобы температура в печи была выше максимальной температуры плавления на 20 - 40 К. Однако практика показала, что нельзя бесконтрольно повышать температуру, так как при температурах, превышающих температуру плавления, возможно разрушение ампул из-за В высокого давления пара халькогена. процессе получения монокристаллов методом направленной кристаллизации скорость охлаждения расплава выбиралась таким образом, чтобы обеспечить фронт близкий кристаллизации, к плоскому, как вследствие так концентрационного переохлаждения для селенидов индия и галлия при скоростях, больших, чем 0.5 см·сутки⁻¹ возможна потеря морфологической устойчивости плоского фронта и переход к ячеистой структуре.

Так как при работе с селеном и селенидами металлов необходимо учитывать сравнительно высокое давление паров селена и вероятность «взрыва» ампулы, то одной из задач работы было уточнение методики синтеза селенидов галлия GaSe и Ga₂Se₃. Процесс синтеза проводился осторожным повышением медленно, c температуры. B процессе повышения температуры делалась продолжительная выдержка при температурах, когда происходит образование данных селенидов. Так как реакции образования GaSe и Ga₂Se₃ экзотермичны, то наибольшая выдержка была при температурах 1210 К и 1280 К соответственно, когда при интенсивном протекании реакции выделяется значительное количество тепла и температура внутри ампулы резко возрастает. При синтезе GaSe и Ga₂Se₃ сплавлением компонентов средняя скорость увеличения температуры не должна превышать 0.5 К·мин.⁻¹ и по мере приближения к Т_т уменьшаться до 0.25 К мин.⁻¹, а объем заполнения ампул должен быть максимален и составлять не менее 80%. Равномерное распределение температуры по всему объему – одно из основных требований,

предъявляемых к синтезу селенидов GaSe и Ga₂Se₃ сплавлением компонентов. Нарушение этого условия ведет к возгонке селенидов и «взрыву» ампулы. Во время синтеза селениды галлия не должны перегреваться больше температуры ликвидуса более чем на 40 - 50 К, чтобы не допустить разложение. К тому же, значительный перегрев расплава ведет к его переохлаждению при кристаллизации, а в переохлажденном расплаве труднее получить единственный центр роста. Управление зародышеобразованием также проводилось путем использования конического окончания кварцевых ампул для синтеза. Ампулы с расплавом охлаждали так, чтобы кристаллизация начиналась с конца. Поскольку объём заострённого расплава, находящегося В конусообразной части ампулы невелик, то вероятность образования одного центра кристаллизации увеличивается. Дальнейшее охлаждение проводилось так, чтобы изотермическая поверхность, близкая к точке плавления вещества, перемещалась от носика ампулы вверх через весь расплав. При этом происходил рост зародыша, возникшего в носике ампулы.

Итак, для повышения однородности образцов для термодинамических исследований были уточнены условия синтеза соединений $A^{III}B^{VI}$, уточнены температуры и состав шихты, градиенты температур в зоне роста, скорости протяжки (≈ 0.5 см·сутки⁻¹), получены кристаллические образцы с высокой степенью совершенства.

2.2. Низкотемпературные адиабатические калориметры.

Для определения теплоемкости соединений группы $A^{III}B^{VI}$ в работе использовались пять экспериментальных установок: а) вакуумный адибатический калориметр, сконструированный к.х.н. В.Е. Горбуновым и изготовленный в ИОНХ РАН; б) автоматический низкотемпературный адиабатический калориметр производства АОЗТ «Термис» (Менделеево, Моск. обл.); в) установка исследования физических свойств материалов PPMS 9 фирмы Quantum Design; г) дифференциальный сканирующий калориметр DSC-111 SETARAM; д) установка синхронного термического анализа STA 449 F1 Jupiter (R) фирмы Netzsch.

В конструкцию вакуумного адибатического калориметра, сконструированного и изготовленного в ИОНХ РАН, были внесены усовершенствования.

2.2.1. Адиабатический калориметр ИОНХ РАН.

Основу установки составляют калориметр и криостат, описанные в [1]. В настоящей работе внесены изменения в конструкцию калориметра и криостата. Криостат по сравнению с рассмотренным в [1], сделан был боле удобным - электрические выводы, загерметизированые ранее с помощью композита на основе смолы ТК-75, были заменены на радиотехнический разъем с позолоченными контактами, что позволяет гарантировать вакуум в процессе измерений и легко отсоединять криостат замене исследуемого образца. По сравнению с OT фланца при конструкцией, описанной в [1], в настоящей работе калориметр был перевернут на 180° таким образом, что дно контейнера с исследуемым веществом теперь находится вверху, а крышка контейнера – внизу. Калориметр в таком криостате закреплен на трех тонкостенных капиллярах из нержавеющей стали, при этом возможна его регулировка по соблюдение вертикальности. Такое устройство высоте И калориметрической системы позволило сократить до минимума число проводов, распаиваемых при замене исследуемого вещества – необходимо только распаять нагреватель внутреннего адиабатического экрана. Нагреватель внешней адиабатической ширмы соединяется при помощи радиотехнического с позолоченными разъема контактами. что обеспечивает быстрое соединение, надежный контакт и не требует использования специального инструмента. Это значительно упрощает смену образцов и даёт возможность избежать ошибок, вызываемых изменением тепловых констант прибора. Кроме того, появляется возможность иметь несколько контейнеров для одного калориметра, что особенно удобно при исследовании веществ, подготовка которых к измерениям требует значительного времени.

В низкотемпературном калориметре ИОНХ РАН была измерена теплоемкость GaSe, Ga₂Se₃, InSe и InTe. Перед проведением измерений температурной зависимости теплоемкости было выполнено изучение теплоемкости стандартного вещества (бензойной кислоты марки K-2) для подтверждения качества получаемых на калориметрической установке данных по теплоемкости. Отклонение экспериментальных значений от приведенных в литературе данных по теплоемкости бензойной кислоты [2] не превысило 0.25 % в области температур 50 - 300 К (рис. 1). В области ниже 50 К отклонение несколько увеличивалось (до 2 % при 15 К). Кривые

температурной зависимости теплоемкости GaSe, Ga₂Se₃, InSe и InTe определены в 88, 101, 128 и 84 экспериментальных точках соответственно.

Рис. 1. Отклонение данных по теплоемкости бензойной кислоты от литературных данных [2].

2.2.2 Автоматический низкотемпературный адиабатический калориметр АОЗТ «Термис».

В автоматическом адиабатическом калориметре была измерена теплоемкость GaTe и Ga₂Te₃. Поверку надежности работы калориметра осуществляли посредством измерения C_p эталонного образца особо чистой меди, эталонного корунда и бензойной кислоты марки K-2. Теплоемкость веществ измерялась в интервале температур 5 – 350 K с "шагом" по температуре 0.1 – 1.0 K в области 5 – 80 K и 1.0 – 4.0 K – выше 80 K. Кривая температурной зависимости теплоемкости GaTe определена в 118 экспериментальных точках, Ga₂Te₃ – 134.

2.2.3. Установка исследования физических свойств материалов Quantum Design Physical Property Measurement System (PPMS) 9.

Измерения молярной теплоемкости Ga₂Te₃ при постоянном давлении C_p проведены по стандартной методике на кристаллическом образце Ga₂Te₃ размером несколько кубических миллиметров. Измерения проводились в температурном интервале 2 – 100 К релаксационным

методом в режиме нагревания платформы с образцом. Значение теплоемкости при определенной температуре измерялось в течении 10 - 15 мин., шаг изменения температуры при переходе от точки к точке составлял 1 К. Для поверки прибора использовали эталонный корунд, относительная ошибка измерений составляет менее 2%, и величина ее зависит от диапазона температур, в которых проводятся измерения. Кривая температурной зависимости теплоемкости Ga₂Te₃ на PPMS 9 определена в 258 экспериментальных точках.

2.2.4. Дифференциальный сканирующий калориметр DSC111 SETARAM.

Записи кривых нагревания ДСК образцов InTe проводились в атмосфере инертного газа в герметичных контейнерах из нержавеющей стали с никелевыми уплотнениями при почти полном заполнении веществом объема контейнера. Предварительно проводились холостые нагревания тех же стальных контейнеров с целью коррекции базовой линии ДСК и расчета теплоемкости образцов в режиме непрерывного нагревания. В области высоких температур теплоемкость InTe определена в 66 экспериментальных точках.

2.2.5. Установка синхронного термического анализа STA 449 F1 Jupiter ® фирмы Netzsch.

ДСК-ТГ исследования проводились на установке синхронного термического анализа STA 449 F1 Jupiter $\mbox{\ensuremath{\mathbb{R}}}$ фирмы Netzsch в платиновых тиглях с крышкой, имеющей небольшое отверстие, в атмосфере инертного газа (Не 6.0 (99.9999%)). Общий расход газа (защитный и продувочный) в процессе эксперимента составлял 50 мл·мин⁻¹. Экспериментальная часть заключалась в нагревании образца от комнатной температуры до 703 K со скоростью 20 К[·]мин⁻¹. Расчет C_p проводился с помощью метода отношений, при этом в качестве эталона использовался сапфир.

III. Обработка данных

Для расчета стандартных термодинамических функций GaSe, Ga₂Se₃, GaTe, Ga₂Te₃, InSe, InTe в широком интервале температур был проведен анализ и обработка экспериментальных данных по теплоемкости. Эта задача выполнена с использованием метода сплайн-аппроксимации по программе, являющейся частью математического обеспечения банка данных ИВТАНТЕРМО [3].

Обработка экспериментальных данных проводилась в два этапа:

- 1) экстраполяция теплоемкости к 0 К;
- 2) сглаживание экспериментальных данных с учетом особенностей зависимости *C_p*(T).

Низкотемпературная теплоемкость шести изученных соединений представляет собой монотонно увеличивающуюся гладкую кривую без каких-либо аномалий. Теплоемкость α-Ga₂Se₃ и α-Ga₂Te₃ определена впервые.

С помощью описанного пакета программ рассчитаны термодинамические функции изученных соединений (табл. 1). В табл. 1 также приведены энтальпии образования $\Delta_f H^0$ (298.15 K), использованные для расчетов и заимствованные из литературы.

Таблица 1

Термодинамические	функции халькогенидов	индия и галлия при Т =
=298.15 K.		

Термодинамич.	ε-GaSe	α -Ga ₂ Se ₃	β-GaTe	α -Ga ₂ Te ₃	β-InSe	InTe
функции						
$\Delta_{f}H^{0}(298.15 \text{ K}),$	-165.27±	-405.85±	-119.66±	-345.18	-117.99±	-71.2±
кДж·моль ⁻¹	±8.37 [5]	±20.92[5]	±12.55[5]	[6]	±12.55[5]	±0.3 [4]
$\Delta_f G^0(298.15 \text{ K}),$	-161.4±	-397.5±	-116.9±	-339.0±	-112.7±	-69.67±
кДж·моль ⁻¹	±0.3	± 0.8	±0.2	±0.7	±0.2	±0.14
$\Delta_{f}S^{0}(298.15 \text{ K}),$	-13.05±	-28.17±	-9.282±	-20.86±	-17.75±	-5.118±
Дж· K^{-1} ·моль $^{-1}$	±2.10	±3.81	±0.169	±0.35	±2.52	±0.209
<i>C</i> ⁰ _{<i>p</i>} (298.15 K),	47.67±	120.8±	48.96±	119.3±	49.43±	50.67±
Дж· K^{-1} ·моль $^{-1}$	±0.10	±0.2	±0.10	±0.2	±0.10	±0.10
<i>S</i> ⁰ (298.15 K),	70.17±	180.4±	81.30±	209.8±	82.20±	102.2±
Дж· K^{-1} ·моль $^{-1}$	±0.14	±0.4	±0.16	± 0.4	±0.16	±0.2
<i>H</i> ⁰ (298.15 K) –	9.972±	25.32±	10.84±	27.19±	10.94±	12.19±
$-H^{0}(0),$	± 0.020	±0.05	± 0.02	± 0.05	± 0.02	± 0.02
кДж·моль ⁻¹						
$\Phi^{0}(\overline{298.15 \text{ K}}),$	36.72±	95.52±	44.95±	118.6±	45.50±	61.33±
Дж· K^{-1} ·моль ⁻¹	±0.07	±0.19	±0.09	±0.2	±0.09	±0.12

 $\Phi^{0}(T) = - [G^{0}(T) - H^{0}(0)]/T$

На основании экспериментальных данных по теплоемкости тех

изученных соединений, для которых были получены данные ниже 15 К: GaTe, Ga₂Te₃ и InSe, были построены зависимости C_p/T от T² (рис. 2). Из рис. 2 видно, что в интервале температур 2 - 15 К полученная зависимость близка к линейной и проходит через начало координат. Это свидетельствует о том, что температурная зависимость теплоемкости халькогенидов в этом интервале описывается выражением:

$$C_p = \alpha T$$

и можно полагать, что для ее описания и экстраполяции данных к 0 К пригодна модель Дебая.

Рис. 2. Зависимость $C_p/T=f(T^2)$ в области 2.05 – 15.95 К для Ga₂Te₃.

IV. Описание данных по низкотемпературной теплоемкости и структуры с помощью модели фракталов

Для оценки характеристической температуры и фрактальной размерности был использован подход, описанный в [7].

Изохорная теплоемкость C_V теллурида индия InTe была определена, используя уравнение Нернста – Линдемана $C_p - C_V = 1.22 \cdot 10^{-3} C_p^2 \text{ T/T}_m$ (где T_m - температура плавления InTe). Из величин C_V были рассчитаны величины характеристической температуры в изученном температурном интервале (рис. 3), для чего теплоемкость InTe на грамм-атом трансформировали в характеристическую температуру. На рис. 3 видно, что при температурах выше 100 К характеристическая температура становится практически постоянной и равной 186±5 К. Выше 220 К характеристическая температура начинает падать, что может быть связано с ангармонизмом тепловых колебаний и неточностью определения вклада работы расширения решетки.

Для описания размерности кристаллической решётки GaSe и оценки его характеристической температуры, из величин C_V GaSe в изученном температурном интервале были рассчитаны температурные зависимости характеристической температуры Θ для трёх величин фрактонной размерности D (2, 2.5 и 3). По максимальному значению Θ можно определить характеристическую температуру GaSe, она близка к 350 ± 15 К. Используя оцененную характеристическую температуру Θ рассчитали температурную зависимость фрактонной размерности GaSe для $\Theta = 330$ K (что отвечает D = 3), 350 K (D = 2.5), 370 K (D = 2) (рис. 4). Из рис. 4 следует, что при экстраполяции к нулю Кельвина все кривые, независимо от характеристической температуры, использованной в расчёте, стремятся к одной и той же величине фрактонной размерности, меньшей 3, что позволяет подтвердить слоистый характер кристаллической решётки Этот хорошо изучаемого соединения. результат коррелирует co структурными данными о наличии слоев в структуре GaSe.

случае это вклад, учитывающий решеточные колебания) и работы расширения решетки C_p - C_V . Характеристическая температура Θ^{∞} Ga₂Se₃, рассчитанная с использованием фрактального подхода описания теплоемкости, составила 340 ± 10 К.

Характеристическая температура Θ^{∞} монотеллурида галлия GaTe, рассчитанная из данных по теплоемкости, составила 270 ± 10 K, что почти в полтора раза больше значения, определенного ранее и полученного из данных теплопроводности.

На рис. 5 приведён вид температурных зависимостей фрактонной размерности Ga_2Te_3 . Рассмотрение вида кривых D(T) позволяет оценить характеристическую температуру Ga_2Te_3 , равную 280 ± 20 К. В литературе нами не обнаружено значение температуры Дебая Ga_2Te_3 .

Рис. 5 Вид кривых фрактонной размерности Ga_2Te_3 в зависимости от выбранной характеристической температуры (\bigcirc - 240 K, \blacksquare - 260 K, \triangle - 280 K, \Diamond - 300 K, +- 320 K, \times - 340 K, ∇ - 360 K).

В работе рассчитана температурная зависимость фрактонной размерности InSe для Θ

= 250 К, 260 К, 270 К и 280 К. При экстраполяции к нулю Кельвина все кривые стремятся к одной и той же величине фрактонной размерности, немного большей 2, что позволяет подтвердить слоистый характер кристаллической решётки изучаемого соединения. Этот результат также хорошо коррелирует со структурными данными о наличии слоев в структуре InSe. Из величин C_V InSe в изученном температурном интервале была рассчитана температурная характеристической зависимость температуры Θ. По максимальному значению Θ можно оценить характеристическую температуру InSe (275 ± 15 K). Характеристические температуры халькогенидов индия и галлия, определенные в настоящей работе, сведены в таблице 2.

Итак, в области низких температур фрактонная размерность позволяет судить о размерности кристаллической структуры, и с ее помощью можно связать данные по теплоемкости с информацией об особенностях реальной структуры. На основании анализа зависимости фрактонной размерности от температуры определены преимущественные мотивы в структуре соединений, в частности слои для GaSe, GaTe, InSe. В этих структурах отдельные пакеты ... B-A-A-B... (A = Ga или In, B = Se или Те) связаны между собой силами, близкими к Ван-дер-Ваальсовым. В таких пакетах атомы более электроположительного элемента «А» (Ga, In) образуют 4 связи, из которых одной осуществляется взаимодействие с таким же атомом «А», а тремя оставшимися – с атомами «В». Атомы более электроотрицательного элемента «В» (Se, Te) дают по 3 связи (только с атомами «А»). Электроны внешнего слоя каждого типа атомов в А^ШВ^{VI} sp^3 -гибридному. состоянии, близком К Фактически находятся в четырехвалентное состояние атома «А» в А^ШВ^{VI} достигается за счет образования одной из связей «А-В» по донорно-акцепторному механизму. По этой же причине валентность атома «В» достигает 3-х. По мере увеличения различия электроотрицательностей атомов «А» и «В», усиливаются силы, действующие между слоями, что приводит к росту фрактонной размерности.

Таблица 2

Соединение	GaSe	Ga ₂ Se ₃	GaTe	Ga ₂ Te ₃	InSe	InTe
Θ, Κ	350	340	270	280	275	186

Характеристические температуры соединений А^ШВ^{VI}.

При обработке данных низкотемпературной калориметрии соединений A^{III}B^{VI} использовано представление о мультифрактальности ансамбля фононов. При этом характеристическая температура остается строго постоянной, а фрактонная размерность фононного облака является функцией температуры.

V. Обсуждение результатов

Глава 5 посвящена обсуждению полученных результатов.

Чтобы описать поведение теплоемкости α-Ga₂Te₃ в области самых низких температур, помимо данных адиабатической калориметрии, мы определили теплоемкость методом релаксационной калориметрии в области 2-100 К. Из рис. 6 видно, что кривая, полученная методом

релаксационной калориметрии (> 2 K), хорошо продолжает кривую, полученную адиабатической калориметрией (> 9 K).

Для аппроксимации теплоемкости при высоких температурах в справочных изданиях наиболее часто используют уравнение Майера-Келли. Теплоёмкость GaSe, Ga₂Te₃, InSe, определенную в области высоких температур на установке синхронного термического анализа STA 449 F1, с удовлетворительной погрешностью сгладили, используя эмпирическое уравнение Майера-Келли $C_p = a + b \cdot T - c \cdot T^{-2}$, параметры которого приведены в табл. 3. Эти данные можно рекомендовать как справочные. На кривой теплоемкости Ga₂Te₃ (единственного соединения из изученных) при ≈ 320 К наблюдается излом. Появление излома может быть связано с окислением теллурида с выделением свободного теллура. Ранее [9] уже отмечалась возможность того, что образцы теллуридов галлия могут «пылить». Действительно, после эксперимента у выходного отверстия крышки тигля была обнаружена конденсация паров исходного вещества, а внутренняя часть тигля оказалась покрыта серым налетом. По этой причине для расчета термодинамических функций использовались только низкотемпературные величины теплоемкости α-Ga₂Te₃.

Рис. 6. Сопоставление низкотемпературной теплоемкости Ga₂Te₃, полученной методом адиабатической калориметрии (> 9 K) и методом релаксации (> 2 K).

Таблица 3

Соединение	а, Дж·К ⁻¹ ·моль ⁻¹	b, Дж·К ⁻² ·моль ⁻¹	с, Дж·К·моль ⁻¹
GaSe	37.725	0.034	-13420.9
Ga ₂ Te ₃	22.448	0.233	2430762.6
InSe	36.769	0.038	109878.5

Коэффициенты а, b и с в уравнении Майера-Келли.

Из данных, представленных в табл. 1, следует, что величины $\Delta_f H^0(298.15 \text{ K})$ и $\Delta_f G^0(298.15 \text{ K})$ (по модулю) и определяемая ими термодинамическая стабильность (устойчивость к распаду на простые вещества: металл A^{III} и халькоген B^{VI}) убывают по мере роста атомных номеров элементов от Ga к In в рядах однотипных ($A^{III}B^{VI}$ или $A^{III}_{2}B^{VI}_{3}$) соединений.

Разница в природе компонентов, образующих соединение $A^{III}B^{VI}$ и $A^{III}_{2}B^{VI}_{3}$ дает основание утверждать, что связь между ними не является чисто ковалентной. Электронная плотность между атомами должна быть ассимметричной и смещена к более электроотрицательному аниону. Эта зависимость отражает две тенденции:

- Уменьшение вклада р-электронов в химическую связь атомов A^{III} и В^{VI} по мере роста главного квантового числа и роста атомного радиуса.
- Увеличение размерного несоответствия атомов элементов III и VI групп (по мере увеличения размерного несоответствия атомов перекрывание атомных орбиталей уменьшается, и, как следствие, уменьшается прочность связей А^{III}-В^{VI}).

Изменение энтальпии образования в рядах $A^{III}B^{VI}$ связано с изменением ионной и ковалентной составляющих химической связи. Уменьшение ионности связи при переходе от сульфидов к теллуридам приводит к уменьшению прочности химической связи металл – халькоген и уменьшению отрицательности энтальпии образования $\Delta_f H^0$ (298.15 K).

По сравнению с фазами A₂B₃ наибольшей термодинамической стабильностью обладают фазы AB.

Отметим, что зависимость энтальпии образования от температуры плавления в ряду халькогенидов галлия GaS-GaSe-GaTe имеет вид прямой. Такая эмпирическая зависимость может быть обусловлена близостью структуры и параметров решетки: моносульфид и моноселенид галлия

имеют гексагональную сингонию, а для теллурида галлия гексагональная сингония метастабильна, устойчивая же моноклинная решетка имеет параметры а и b близкие к таковым у GaS и GaSe. Для монохалькогенидов индия: InS, InSe и InTe такой эмпирической зависимости между $\Delta_f H^0$ от T_m не наблюдается. Это можно объяснить тем, что элементарная ячейка этих соединений, в отличие от монохалькогенидов галлия, состоит из четырех атомов, в решетке присутствуют два разновалентных атома индия In⁺¹ и In⁺³ и два атома халькогена.

Стандартные энтропии $S^0(298.15 \text{ K})$ для α -Ga₂Se₃ и α -Ga₂Te₃ определены впервые, а для ε -GaSe, β -GaTe, β -InSe и InTe уточнены и согласуются с литературными данными. Энтропии образования $\Delta_{j}S^{0}(298.15 \text{ K})$ рассчитаны с использованием стандартных энтропий компонентов (Ga, In, Se, Te). Стандартная энтропия $S^0(298.15 \text{ K})$ и энтропия образования $\Delta_{j}S^{0}(298.15 \text{ K})$ зависят от интенсивностей и величин частот колебательного спектра, от взаимного расположения различных уровней энергии молекул в системе, то есть от фононного спектра. С ростом молекулярной массы соединений наблюдается закономерный рост стандартной энтропии, например, от 70.17±0.14 Дж·K^{-1.}моль⁻¹ у GaSe до 102.2±0.2 Дж·K^{-1.}моль⁻¹ у InTe. Усложнение молекулы также приводит к возрастанию энтропии, что связано с увеличением набора электронных, колебательных, вращательных и поступательных мод.

Отметим, рост энтропии $S^0(298.15 \text{ K})$ на г-ат по мере увеличения молярной массы как для соединений AB, так и для соединений A₂B₃, причем энтропия халькогенидов A₂B₃ оказывается ниже энтропии фаз AB. Изменение энтропии $S^0(298.15 \text{ K})$ в ряду халькогенидов A^{III}S - A^{III}Se - A^{III}Te обусловлено колебательным вкладом – уменьшением жесткости решетки, понижением частоты колебаний, увеличением массы атомов и, как следствие, увеличением межатомных расстояний и понижением температуры Дебая.

Выводы

- На основании впервые проведенного систематического исследования теплоемкости стабильных при комнатных температурах политипов шести селенидов и теллуридов индия и галлия в интервале температур 4 – 350 К вычислены значения стандартных термодинамических функций (теплоемкости, энтропии, приведенной энергии Гиббса и изменения энтальпии) в области низких температур. С использованием литературных данных по энтальпиям образования из простых веществ, для указанных соединений определены энергии Гиббса образования.
- 2. По результатам измерений, проведенных методом дифференциальной сканирующей калориметрии, впервые определены температурные зависимости теплоемкости GaSe, Ga₂Te₃, InSe, InTe в области 300 700 К и рассчитаны термодинамические функции в указанном диапазоне.
- 3. Установлено, что в области самых низких температур зависимость C_p/T = f(T²) для полупроводниковых соединений A^{III}B^{VI} имеет линейный вид. Это позволяет использовать модель Дебая для экстраполяции к нулю Кельвина и расчета абсолютных значений термодинамических функций.
- 4. Показана применимость фрактальной модели температурной зависимости теплоемкости для GaSe, Ga₂Se₃, GaTe, Ga₂Te₃, InSe, InTe. Определены параметры модели: характеристическая температура и температурная зависимость фрактонной размерности.
- 5. Рассмотрены факторы, влияющие на изменение термодинамических свойств (энтальпии образования $\Delta_{f}H^{0}$, стандартной энтропии $S^{0}(298.15 \text{ K})$) в рядах халькогенидов индия и галлия $A^{III}B^{VI}$ и $A^{III}_{2}B^{VI}_{3}$ ($A^{III} = Ga$, In; $B^{VI} = S$, Se, Te).
- 6. Уточнена методика синтеза, позволяющая получать кристаллические образцы стабильных политипов селенидов и теллуридов индия и галлия из расплава.
- 7. Модернизирована прецизионная калориметрическая установка ИОНХ РАН, в результате чего удалось сохранять постоянство теплового значения калориметра при смене образцов. На основании данных по измерению теплоемкости стандартных веществ установлены метрологические характеристики используемого в ИОНХ РАН вакуумного адиабатического калориметра АОЗТ «Термис».

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ ИЗЛОЖЕНО В ПУБЛИКАЦИЯХ

статьи в журналах, рекомендованных перечнем ВАК РФ:

1. K. S. Gavrichev, L. N. Golushina, V. E. Gorbunov, G. A. Sharpataya, A. V. Khoroshilov, A. D. Izotov, O. V. Ilyukhin, A. V. Tyurin, V. P. Zlomanov, and V. M. Gurevich The Heat Capacity and Thermodynamic Properties of InTe in the Temperature Range 15–600 K. // Rus J. of Physical Chemistry, 2001, Vol. 75, Suppl. 1., S100 – S104.

2. А.В. Тюрин, К.С. Гавричев, В.Е. Горбунов, Л.Н. Голушина, А.Д. Изотов, В.П. Зломанов. Низкотемпературная теплоемкость и термодинамические свойства GaSe. // Журн. физич. химии, 2004, Т. 78, № 10, С. 1754 – 1757.

3. А.В. Тюрин, К.С. Гавричев, Л.Н. Голушина, В.Е. Горбунов, В.П. Зломанов. Теплоемкость и термодинамические функции Ga₂Se₃ в интервале температур 14-320 К. // Неорган. материалы, 2005, Т. 41, № 11, С. 1297 – 1300.

4. А.В. Тюрин, К.С. Гавричев, В.П. Зломанов, Н.Н. Смирнова. Теплоемкость и термодинамические функции GaTe в области низких температур. // Неорган. материалы, 2006, Т. 42, № 8, С. 945 – 948.

5. А.В. Тюрин, К.С. Гавричев, В.П. Зломанов, Т.А. Быкова. Теплоемкость и термодинамические свойства Ga₂Te₃ в области низких температур. // Неорган. материалы, 2006, Т. 42, № 9, С. 1053 – 1056.

6. А.В. Тюрин, К.С. Гавричев, В.П. Зломанов. Низкотемпературная теплоемкость и термодинамические свойства InSe. // Неорган. материалы, 2007, Т. 43, № 9, С. 1031 – 1035.

публикации в печати:

А.В. Тюрин, К.С. Гавричев, А.В. Хорошилов, В.П. Зломанов. Теплоемкость и термодинамические функции GaSe в области 300 – 700 К. // Неорган. материалы, 2014.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

1. Гавричев К. С. Теплоемкость и термодинамические функции неорганических соединений с тетраэдрическими и октаэдрическими анионами (BH_4^- , AlH_4^- , GaH_4^- , BF_4^- , ClO_4^- , BrO_4^- , IO_4^- , PF_6^- , AsF_6^-), - Дисс. на соискание ученой степени доктора химических наук, М., 2003.

2. Стрелков П.Г., Склянкин А.А. О воспроизводимости и точности численных значений энтальпии и энтропии конденсированных фаз при стандартных температурах. // Прикл. мех. и техн. физика, 1960, № 2, С. 100 – 111.

3. Иориш В.С., Толмач П.И. Методика и программа обработки экспериментальных данных по низкотемпературной теплоемкости с использованием аппроксимирующего сплайна. // Журн. физич. химии, 1986, Т. 60, № 10, С. 2583 – 2587.

4. Киспе Паукар Г. А. Синтез и термодинамическое исследование фаз в системе In - Те, - Дисс. на соискание ученой степени кандидата химических наук, М., МГУ, 1999.

5. Hahn H., Burov F. Uber die bildugsenthalpien der Sulfide, Selenide und Telluride des Galliums und Indiums. // Angew.Chemie, 1956, V. 68, N. 11, P. 382.

6. Аббасов А.С., Никольская А.В., Герасимов Я.И., Васильев В.П. Исследование термодинамических свойств теллуридов галлия методом электродвижущих сил. // ДАН СССР, 1964, Т. 156, № 5, С. 1140 – 1142.

7. Изотов А.Д., Гавричев К.С., Лазарев В.Б., Шебершнева О.В. Температурная зависимость теплоемкости веществ с мультифрактальной структурой. // Неорган. материалы, 1994, Т. 30, № 4, С. 449 – 456.

8. Керимов И.Г., Мамедов К.К., Мехтиев М.Н., Кострюков В.Н. Теплоемкость теллуридов галлия и индия при низких температурах. // Журн. физич. химии, 1971, Т. 45, N. 8, С. 1969.

9. Пашинкин А.С., Малкова А.С., Жаров В.В. Теплоемкость монотеллуридов галлия и индия. // Журн. физич. химии, 1989, Т. 63, С. 1621.

БЛАГОДАРНОСТИ

Автор выражает особую благодарность д.х.н., проф. В.П. Зломанову, под руководством которого выполнен синтез исследованных образцов и который принял деятельное участие в подготовке рукописи.