ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ им. Н.С. КУРНАКОВА РАН

На правах рукописи

ПАВЛОВА Алина Витальевна

СИНТЕЗ И ОСОБЕННОСТИ СТРОЕНИЯ ОРГАНОХАЛЬКОГАЛОГЕНИДОВ И КОМПЛЕКСОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ НА ИХ ОСНОВЕ

02.00.01 Неорганическая химия

Диссертация

на соискание ученой степени кандидата химических наук

Научный руководитель: доктор химических наук Торубаев Юрий Валентинович

Москва 2014 г.

Оглавление

BBE,	дение	4
Ак	туальность проблемы.	4
Це	ель работы	4
Of	бъекты исследования	4
На	учная новизна	5
Пр	рактическое значение работы	5
На	а защиту выносятся следующие положения:	5
Ап	пробация работы	6
Пу	/бликации	6
Ст	руктура и объем диссертации	6
ГЛАВА	А 1 ЛИТЕРАТУРНЫЙ ОБЗОР	8
Комг	плексы переходных металлов с органохалькогенатными лигандами	8
Мета	аллоорганические органо-халькогалогенидные комплексы	16
Орга	нохалькогенатные комплексы переходных металлов в качестве лигандов	23
ГЛАВА	А 2 ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ	27
2.1. F	Карбонильные комплексы хрома и железа с диорганодихалькогенидными (R_2E_2 E=Te, Se) лига	ндами.
		27
2.2. F	еакции комплексов переходных металлов с фенилхалькогалогенидами	
2.3 C	интез и молекулярные структуры циклооктаеновых теллур-галогенидов	
2.4 0	Экислительное присоединение RTeBr ₃ к [CpFe(CO) ₂] ₂ с разрывом связи Fe-Fe	
2.5 B	заимодеиствие ферроценилацетилена FcC=CH с RIeBr ₃	
2.6. k	аспользование монодентатного теллурофенильного комплекса железа CpFe(CO) ₂ TePh как лиг	анда .51
2.7.¥	использование хелатирующего теллурофенильного комплекса платины, как лиганда	
2.8. С платі	интез и молекулярные структуры гетерометаллических ферроценилтеллуридных комплексов ины	
2.9.0	Синтез и молекулярные структуры ферроценилтеллур-содержащих комплексов железа	58
ГЛАВА	А З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	66
3.1	Реагенты, растворители и приборы	66
3.2.	Рентгеноструктурное исследование.	66
1	$Cr(CO)_5(Ph_2Se_2)$	67
2	$Fe(CO)_3I_2(Ph_2Se_2)$	67
3	FcTe-TeCl ₂ Fc; 4 FcTe-TeBr ₂ Fc; 5 FcTe-TeI ₂ Fc	68
6	FcTeMeI ₂	68
7	$[FcSe_3]^+[FeBr_4]^-$	69
8	$[(CO)_3Fe(I)TePh]_2$	69
9	$[(CO)_3Fe(\mu-SePh)_3Fe(CO)_3]^+(I_5)^-$	70
10	$[((CO)_3RuBr_2)_2(\mu\text{-SePh})_2Ru(CO)_4].$	70
11	$[\text{Re}(\text{CO})_3(\mu\text{-I})]_2(\mu\text{-Ph}_2\text{Se}_2)$	70
12	CymenRuI(µ-I)(PhTeI)	71
13	$(C_8H_{12})(OMe)TeBr_3$	71
14	$(C_8H_{12})(OEt)TeBr_3$	72
15	$(C_8H_{12})(OMe)TeI_3$	72
16	$(C_8H_{12})(OEt)TeI_3$	73

17	$(C_8H_{12})Br_2Se$	73	
18	$(C_8H_{12})Br_2SeBr_2$	73	
19	CpFe(CO) ₂ (TeBr ₂ Ph)	74	
20	$CpFe(CO)_2(TeBr_2(OMe)(C_8H_{12}))$	74	
21	$CpFe(CO)_2(TeI_2(OMe)(C_8H_{12}))$	75	
22	$(C_8H_{12})(OEt)TeBr_2CHCBrFc$	75	
23	$CpFe(CO)_2(\mu\text{-TePh})Fe(CO)_3I_2$	76	
24	$[CpFe(CO)_2(\mu\text{-}TePh)]_2Re(CO)_3Cl$	76	
25	$dppePt(\mu-TePh)_2Re(CO)_3Cl\ldots$	77	
26	dppePt(TeFc) ₂		
27	dppe(µ-TeFc) ₂ Re(CO) ₃ Cl		
28	$(CO)_3FeI_2Te_2Fc_2$		
29	CpFe(CO) ₂ TeFc		
30	$CpFe(CO)_2TeFcBr_2$		
31	CpFe(CO) ₂ TeFcI ₂		
32	$CpFe(CO)_2(\mu\text{-}TeFc)Fe(CO)_3I_2 \ldots$		
33	$Cp_3Fe_3(\mu\text{-}TeFc)_3(\mu\text{-}CO)CO$		
вывод	(Ы		
ПРИЛО	ЭЖЕНИЯ		
Списо	ок комплексов		
Основ	зные публикации по теме работы:		
Ста	тьи		
Тез	исы докладов		
Список условных сокращений			
Таб	Таблица ковалентных радиусов		
Списо	Список используемой литературы		

введение

Актуальность проблемы.

Полиядерные комплексы переходных металлов с органохалькогалогенидными лигандами ([RTeX], [RSeX] X=Hal) представляют собой новую область современной координационной химии. Несмотря на то, что соединения (RTe/SeX_n X=Hal) привлекали внимание исследователей в области органической химии еще в 60-е годы благодаря возможности стерео и регио-селективного присоединения по концевой тройной C=C связи [1, 2], иная сторона их реакционной способности, а именно, способность выступать в роли лигандов, оставалась изученной относительно слабо. Сегодняшний интерес к ней определяется одним из трендов современной неорганической химии – создание материалов заданного гетерометаллического состава на основе комплексов переходных металлов, как прекурсоров.

Стоит отметить, что халькогениды переходных металлов являются важным классом неорганических веществ с точки зрения их практического применения, будучи перспективными материалами для современной электроники и других областей техники и технологии, используясь в качестве материалов для оптических, магнитных и полупроводниковых устройств, для фотокатодов и фоторезисторов, компонентов люминофоров, лазерных материалов, термоэлектрических преобразователей и в качестве катализаторов в нефтепереработке и органическом синтезе [3, 4, 5, 6, 7, 8]. Проблема поиска новых методов получения халькогенидов переходных металлов актуальна, так как на данный момент времени основной способ их получения – это прямое сплавление, затрудняющее надежное получение материалов с определенной стехиометрией. Одним из способов решения этой проблемы может стать разработка методов синтеза координационных соединений с заранее четко заданным соотношением металл-халькоген.

Цель работы

Направленный синтез гомо- и гетерометаллических халькогенидных комплексов переходных металлов (Fe, Re, Ru, Pt, Cr), содержащих связи металл-халькоген; изучение закономерностей их образования с целью регулирования их состава и строения; установление методом рентгеноструктурного анализа (PCA) строения всех комплексов, выделяемых в виде монокристаллов, и изучение спектральных свойств; изучение термолиза полученных комплексов и возможности их применения в качестве прекурсоров неорганических материалов.

Объекты исследования

Карбонильные комплексы хрома и железа с диорганодихалькогенидными

4

лигандами R₂E₂ (E=Te, Se); комплексы переходных металлов с фенилхалькогалогенидными лигандами; циклооктаеновые теллургалогениды; гетерометаллические ферроценилтеллуридные комплексы платины; ферроценилтеллур-содержащие комплексы железа.

Научная новизна

В данной работе синтезированы 32 новых комплекса, содержащих комбинации переходных металлов (Fe, Re, Ru, Pt, Cr) и халькогенов (Se, Te), причем все комплексы охарактеризованы методом PCA. Обнаружена значительная укороченность формально ординарных связей М–Te, M-Se по сравнению с суммой ковалентных радиусов.

Развит общий подход к направленному синтезу гомо- и гетерометаллических органохалькогенатных комплексов с использованием металл-содержащих комплексов, как лигандов: монодентатных [CpFe(CO)₂TeR] (R=Ph, Fc) и хелатирующих [(dppe)Pt(TeR)₂] (R=Ph, Fc). Методами ЦВА изучены особенности их редокс поведения.

Отмечено, что меньшая стабильность 3с-4е связей для Se по сравнению с Te обуславливает существенные различия в реакционной способности и стабилизации органохалькогалогенидных лигандов.

Впервые синтезированы гетеровалентные ферроценилтеллуренилгалогениды и изучены методом РСА особенности их молекулярного и кристаллического строения, в частности, отмечено и изучено необычное отклонение атома теллура от плоскости Сркольца к атому железа ферроценильного фрагмента.

Практическое значение работы

Синтезированные в данной работе гомо- и гетерометаллические комплексы являются перспективными прекурсорами для получения неорганических материалов заданного сложного состава. В частности, платинасодержащие комплексы перспективны для получения гетерогенных катализаторов, толерантных к метанолу при восстановлении кислорода в топливных элементах.

На защиту выносятся следующие положения:

- Установление закономерностей образования и строения гомо- и гетерометаллических комплексов переходных металлов с органохалькогалогенидными лигандами.
- 2. Обнаружение и трактовка существенного (на 0.1-0.2 Å) укорочения связей М-Х (X=Se, Te) по сравнению с суммой их ковалентных радиусов, которое зависит от заместителей при атоме халькогена и лигандов при атоме переходного металла.
- 3. Использование органохалькогенидных комплексов металлов как лигандов при построении гетерометаллических кластеров.

4. Редокс-превращения ферроценилсодержащих и органотеллур-мостиковых комплексов металлов.

Апробация работы

Материалы исследований докладывались и обсуждались на международных и отечественных конференциях: VII Всероссийская конференция по химии полиядерных «Кластер-2012» 2012, соединений И кластеров Новосибирск, Россия; XXV Международная конференция по металлорганической химии. (XXV ICOMC) 2-7 сентября, 2012, Лиссабон, Португалия; Металлорганическая И координационная химия. Международная школа-конференция металлорганической молодежная по И координационной химии, 1-7 сентября, 2013, Нижний Новгород, Россия; XII Международная конференция по химии селена и теллура (ICCST-12), 22-25 июня, 2013, Кардифф, Великобритания.

Работа была поддержана грантами Российского фонда фундаментальных исследований (№12–03–33101, 13–03–92691) и грантами Президента РФ (№ МК–4196.2010.3, МД–7122.2012.3).

Публикации

По теме диссертации опубликованы 7 научных статей в научных журналах, входящих в перечень ВАК, а также 8 тезисов докладов на российских и международных конференциях.

Личный вклад диссертанта являлся основополагающим на всех этапах работы и состоял в разработке экспериментальных методик, непосредственном проведении экспериментов, выполнении подготовки образцов для исследований различными физикохимическими методами, проведении обработки, анализа и обобщения полученных данных, подготовке материалов для публикаций.

Структура и объем диссертации

Текст диссертации состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, выводов и библиографии (88 наименований). Общий объем диссертации 95 страниц, в том числе 31 рисунок и 25 таблиц.

Благодарности

Автор работы признателен сотрудникам Сектора химии обменных кластеров ИОНХ РАН: д.х.н. А.А.Пасынскому, к.х.н. И.В.Скабицкому, к.х.н. С.С.Шаповалову и студенту Г.Л.Денисову за содействие в экспериментальной работе и в активных дискуссиях; Шабельник К.С. и Столяровой В.П. за проведение элементного анализа; д.х.н. Сахарову С.Г. за исследование ЯМР-спектров, д.х.н. Гринбергу В.А. за проведение электрохимических и каталитических исследований, Российскому фонду фундаментальных исследований и Совету по грантам Президента РФ за финансовую поддержку.

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР

Комплексы переходных металлов с органохалькогенатными лигандами

Халькогенидные мостиковые лиганды играют важную роль в химии кластеров, способствуя сближению ионов металлов и обеспечивая спин-спиновые обменные взаимодействия между ними даже в отсутствие связи металл-металл.

Наиболее распространенными исходными для синтеза кластерных соединений, содержащих мостиковые органохалькогенидные группировки, являются биядерные комплексы состава $[L_nM - ML_n]$ ($L_n -$ различные лиганды) и соответствующие органические дихалькогениды RE-ER (E = S, Se, Te). Реакции, как правило, проводятся при нагревании в различных растворителях (бензол, толуол, ксилол) или при облучении УФ-светом. В большинстве случаев образуются замкнутые металл-халькогенидные циклы, в которых атомы металлов связаны органохалькогенидными мостиковыми лигандами (Схема 1):

Схема 1

В зависимости от электронного строения лигандов, атомов металлов и условий проведения реакций могут быть получены комплексы, содержащие или не содержащие связь М — М.

При облучении УФ-светом раствора Ph_2Te_2 или Ph_2Se_2 с [(MeCp)Mo(CO)₃]₂ в толуоле в течение 3 часов образуются комплексы [(MeCp)Mo(CO)₂EPh]₂ (E = Se, Te) [9], не содержащие связи Мо — Мо.

Схема 2

Однако в твердом состоянии они могут быть подвергнуты мягкому декарбонилированию при нагревании до 80° C в вакууме (0.01 мм рт. ст.) с получением темно-коричневых комплексов состава [(MeCp)Mo(CO)EPh]₂ (E = Se, Te), уже содержащих двойную связь Мо – Мо (Схема 2). Дальнейшее нагревание данных соединений приводит лишь к их

разложению. Стоит отметить, что в аналогичной реакции с одновременным участием Ph_2Te_2 и Ph_2Se_2 комплекс смешанного состава $[(MeCp)_2Mo_2(CO)_4(TePh)(SePh)]_2$ не образуется.

Реакцией хромового димера [CpCr(CO)₃]₂ с одним эквивалентом Ph₂Te₂ в толуоле при комнатной температуре получаются комплекс CpCr(CO)₃TePh (в качестве основного продукта) и следовые количества димерного комплекса [CpCr(CO)₂TePh]₂, в котором отсутствует связь Cr-Cr, а атомы хрома соединены между собой двумя мостиками TePh. Аналогичная реакция, но проведенная при температуре 60°C в течение 4.5 часов дает комплексы CpCr(CO)₃TePh и [CpCr(CO)₂TePh]₂ с преобладанием последнего. Та же реакция при температуре 80°C приводит к образованию уже [CpCr(CO)₂TePh]₂ и [CpCrTePh]₂Te с преобладанием второго комплекса, содержащего связь Cr — Cr [10] (Схема 3)

Схема 3

Строение комплексов CpCr(CO)₃TePh , [CpCr(CO)₂TePh]₂ и [CpCrTePh]₂Te было установлено с помощью рентгеноструктурного анализа. Расстояния Cr—Cr во втором и третьем комплексах равны 4.112(1) и 2.935(2) Å, соответственно, что свидетельствует об отсутствии связи между металлами во втором соединении и наличии ее в третьем.

Реакция [CpFe(CO)₂]₂ с диарилдисульфидами R_2S_2 [11] дает комплексы состава CpFe(CO)₂SR, которые затем могут димеризоваться с получением [CpFe(CO)SR]₂ (Схема 4), для которых возможно несколько Cp-цис-транс и R-син-анти изомеров [12]. С заметным выходом, как правило, получаются только два из них. Для [CpFe(CO)SPh]₂ с более высоким выходом образуется один из изомеров, а именно цис-Cp-цис-R, по данным PCA в этом изомере обе CO группы расположены с той же стороны цикла Fe₂S₂, что и группы SPh.

По аналогии с арилсульфидными комплексами железа были синтезированы [13] селенидные и теллуридные аналоги, CpFe(CO)₂EPh и [CpFe(CO)EPh]₂ (E= Se, Te), причем снова получаются два изомера (Схема 4).

Кроме соединений, содержащих в своем составе две мостиковые халькогенидные группы, из литературы известны комплексы с тремя или четырьмя такими мостиками. Димерные комплексы [RCpMo(CO)₂]₂, содержащие тройную связь, реагируют с Ph₂Te₂ в ксилоле при 110°C. При обработке этой реакционной смеси мягкими окислителями (Cp₂TiCl₂ или Cp₂ZrX₂, где X = Cl или Br) образуются тетрамостиковые соединения [RCpMo]₂(TePh)₄ и [RCpMo]₂(Cl)(TePh)₃ (R = MeCO, MeO₂C) [14]. Однако, при простом нагревании [RCpMo(CO)₂]₂ с Ph₂Te₂ в ксилоле (при 110°C) с высокими выходами были получены комплексы [RCpMo(CO)₂TePh]₂ (R = MeO₂C, EtO₂C), содержащие только две мостиковые TePh группы (Схема 5).

Схема 5

Кипячением [RCpMo(CO)₂]₂ с двумя эквивалентами Ph₂Te₂ в ксилоле (при 145[°]C) было получено соединение [RCpMo(CO)₂TePh]₂ (R = MeO₂C) с выходом всего 9%, что объясняется интенсивным термическим разложением исходного молибденового димера. Четырехмостиковых комплексов при этом получено не было.

При кипячении эквимольных количеств [RCpM(CO)₂]₂ (M=Mo, W; R= H, Me₃Si, MeCO, MeO₂C, EtO₂C) и Ph₂Te₂ в толуоле в течение 6 часов с хорошим выходом образуются соответствующие молибденовые или вольфрамовые димерные комплексы с двумя мостиковыми TePh-лигандами [15] (Схема 6).

Схема 6

Однако если в комплексе [RCpM(CO)₂]₂ R=Me, то в аналогичной реакции с Ph₂Te₂ образуются два продукта: вышеописанный димерный комплекс [MeCpMo(CO)₂(µ-TePh)₂]₂ с двумя TePh-мостиками и необычный комплекс [MeCpMo(CO)(µ-TePh)₃Mo(CO)₃] с тремя TePh-мостиками и связью Mo-Mo (Схема 7). Вероятно, метилциклопентадиенильный лиганд легко распадается с отщеплением фульвена.

Схема 7

При кипячении в THF аниона *cis*-[Mn(CO)₄(TePh)₂]⁻ образуется трехмостиковый биядерный марганцевый анионный комплекс [(CO)₃Mn(µ-TePh)₃Mn(CO)₃]⁻ [16], при окислении которого [Ph₃C]BF₄ образуется известный димерный марганцевый комплекс с двумя TePh-мостиковыми лигандами [(CO)₄Mn(µ-TePh)]₂ [17] (Схема 8).

Схема 8

В результате реакции *cis*-[Mn(CO)₄(TePh)₂]⁻ с Co(ClO₄)₂ и Ph₂Te₂ в THF получили гетерометаллический трехъядерный комплекс состава (CO)₃Mn(µ-TePh)₃Co(CO)(µ-

TePh)₂Mn(CO)₄. По-видимому, в процессе реакции Ph₂Te₂ окислял Co²⁺ до Co³⁺, а исходный *cis*-[Mn(CO)₄(TePh)₂]⁻ и возникающий *fac*--[Mn(CO)₃(TePh)₃]²⁻ использовались, как хелатирующие металлсодержащие лиганды по отношению к Co³⁺ (Схема 9).

 $(CO)_3Mn(\mu\text{-TePh})_3Co(CO)(\mu\text{-TePh})_2Mn(CO)_4$

Схема 9

Аналогично был получен смешанно-халькогенатный комплекс $(CO)_3Mn(\mu-SePh)_3Co(CO)(\mu-TePh)_2Mn(CO)_4$ по реакции двух марганцевых комплексов *cis*-[PPN][Mn(CO)_4(SePh)_2] и *cis*-[PPN][Mn(CO)_4(TePh)_2] с Co(ClO_4)_2*6H_2O и Ph_2Se_2. [18].

Стоит отметить, что димерный марганцевый комплекс $[(CO)_4Mn(\mu-TePh)]_2$ можно получить при взаимодействии BrMn(CO)₅ с Ph₂Te₂ в кипящем бензоле, а также при УФ-облучении Mn₂(CO)₁₀ и Ph₂Te₂ в THF при 25°C [19]. Если же проводить УФоблучение Mn₂(CO)₁₀ и Ph₂Te₂ в кипящем THF, то образуется биядерный трехмостиковый парамагнитный комплекс [Mn₂(CO)₆(μ -TePh)₃] с половинной (одноэлектронной) связью Mn-Mn (3.058(1)Å) (Схема 10).

Схема 10

Установлено, что при взаимодействии *fac*-[Fe(CO)₃(PhTe)₃]⁻ с [Mn(CO)₃(CH₃CN)₃]⁺ в THF через 12 часов с хорошим выходом образуется нейтральный гетерометаллический биядерный комплекс (CO)₃Mn(μ -TePh)₃Fe(CO)₃ [20] (Схема 11).

Для получения кластерных соединений с халькогенидными мостиками могут быть использованы не только карбонильные, но и галогенидные комплексы соответствующих переходных металлов. Например, из пентаметилциклопентадиенильного галогенидного комплекса рутения были получены два типа биядерных комплексов [21]. Как показано на схеме 12, комплекс [(Me_5C_5)RuCl_2]_2 при комнатной температуре в ТГФ реагирует с четырьмя эквивалентами Me_3SiTeR . В результате образуется соединение [(Me_5C_5)RuTeTol]_2Te_2Tol_2, которое было выделено в виде темно-коричневых кристаллов. По данным PCA, длина возникшей в комплексе связи Te — Te равна 2.901(3) Å, а большое расстояние Ru...Ru 4.052(3) Å доказывает отсутствие связи между металлами.

Похожая реакция $[(Me_5C_5)RuCl_2]_2$ с Me_3SiSeR не дает селенидного аналога $[(Me_5C_5)RuSeTol]_2Se_2Tol_2$, но позволяет получить катионные комплексы трехвалентного рутения. Структура (Me_5C_5)_2Ru_2(TeTol)_3 была установлена при помощи PCA, стоит отметить, что все три TeTol лиганда симметрично координируются на два атома рутения, а расстояние Ru — Ru равно 2.684(3) Å, что соответствует одинарной связи.

Схема 12

При окислительном присоединении к четырехъядерному соединению $[Cp*Ru^{II}Cl]_4$ соответствующих органических дихалькогенидов R_2E_2 (RE = SMe, SeMe, TeMe, SEt, SeEt, TeEt, S(*n*-Pr), Se(*n*-Pr), Se(*i*-Pr), Se(*i*-Pr), SPh, SePh, TePh) в ТГФ были получены комплексы следующего состава $[Cp*Ru^{II}(ER)Cl]_2$ [22]. В случае RE = TePh, также был выделен

катионный комплекс [(Cp*Ru^{III})₂(TePh)₃]Cl, катион в котором, подобно вышеупомянутому селенатному комплексу, содержит три мостиковые группы TePh (Схема 13).

Схема 13

В реакции $[Os_3(CO)_{10}(\mu\text{-dppm})]$ (1) с Ph_2Te_2 в толуоле образуются комплексы $[Os_2(CO)_4(\mu\text{-TePh})_2(\mu\text{-dppm})]$ (2b), а также два изомера (2a) и (2c) с общей формулой $[Os_3(CO)_8(\mu\text{-TePh})_2(\mu\text{-dppm})]$ (Схема 14).

Схема 14

Отметим, что по реакции с аналогичным соединением серы получали кластеры с несколько иным строением в результате орто-металлирования (Схема 15).

Сравнивая соединения (3b) и (2a) можно заметить, что в теллуросодержащем кластере резко разрыхлена одна из связей Os-Os, что скорей всего вызвано большими размерами атома халькогена.

Можно сделать вывод, что наличие в кластерах мостиковых групп, содержащих атом Те, приводит к более сильному разрыхлению связи Os-Os и дополнительной фрагментации соединения, несмотря на наличие dppm, стабилизирующего треугольный остов из атомов осмия. В результате начального окислительного присоединения S-S-связи кластер менее стабилен, чем изначальный карбонильный комплекс, что приводит к восстановительному элиминированию тиофенола с последующей активацией связи C-H с участием как SPh, так и dppm лигандов [23].

Схожие результаты наблюдались и при взаимодействии $[Ru_3(CO)_{10}(\mu-dppm)]$ (4a) с Ph₂Te₂, в котором были выделены комплексы $[Ru_2(CO)_4(\mu-TePh)_2(\mu-dppm)]$ (4b), $[Ru_3(CO)_6(\mu_3-Te)_2(\mu-TePh)_2(\mu-dppm)]$ (4c), $[Ru_3(CO)_6(\mu_3-Te)(\mu-TePh)_3(\eta_1-COPh)(\mu-dppm)]$ (4d) (Схема 16). Стоит отметить, что во всех соединениях, кроме (4b) отсутствует связь Ru-Ru. Связи Ru - Те находились в пределах от 2.6745(11) до 2.6691(8)Å, т.е. близки к одинарным. В отличие от теллуровых кластеров, по реакции с Ph₂E₂ оказалось невозможным получить бензоильное производное, аналогичное (4d), вместо чего образовывался комплекс $[Ru_3(CO)_6(\mu_3-E)(\mu-EPh)_3(\eta_1-Ph)(\mu-dppm)]$ (где E=S, Se). [24]

Металлоорганические органо-халькогалогенидные комплексы.

Органотеллуренилгалогениды состава RTeX (X = Cl, Br, I), получаемые при взаимодействии стехиометрических количеств диорганодителлура и соответствующего галогенирующего агента, в отличие от своих серных и селеновых аналогов, характеризуются заметной нестабильностью в твердом состоянии и растворах [25]. Впервые о существовании соединения PhTeI было сообщено в 1947 г. [26], однако в свободном состоянии PhTeI неустойчив. По данным PCA [27, 28], в кристаллическом состоянии [PhTeI] может быть описан как плоский тетрамер с полноценными связями Te-I и удлиненными Te-Te (Схема 17 а). Стоит отметить, что PhTeI может диспропорционировать с образованием элементарного теллура, Ph₂TeI₂ и PhTeI₃ [29].

Схема 17

Однако фенилтеллуренилбромид [PhTeBr], по данным PCA, оказался соединением

PhTe-TeBr₂Ph, в котором атомы Те находятся в двух разных степенях окисления [30] (Схема 17 b). В свою очередь, [PhSeI] – это комплекс с переносом заряда, в котором молекула Ph₂Se₂ связана с молекулой I₂ [31] (Схема 17).

Формулирование арилтеллуренил-галогенидов в виде [ArTeX] (X=Cl, Br, I) было принято благодаря образованию теллуроэфиров ArTeR в их реакциях с органическими электрофилами (R⁻) и комплексов [(L)TeX_nAr] с органическими P-, N-, O-, S- и Se-донорными лигандами (L) (Схема 18).

Схема 18 L = фосфин, амин, галогениды X = Cl, Br, I

Ранее при изучении мессбауэровских спектров [PhTeI] была предположена олигомерная структура [32], а рентгеноструктурные исследования [PhTeI], [PhTeBr], [Mes₂C₆H₃TeI], [Mes₂C₆H₃TeCl] и [(OMe)₂C₆H₃TeI] показали, что кристаллы, за исключением тетрамеров (PhTeI)₄ [27, 28], представляют собой смешанно-валентные соединения ArTe-TeX₂Ar (X=Cl, Br, Ar=Ph, 2,6-Mes₂C₆H₃) [33]; X=I, Ar=2,6диметоксифенил [34] (Таблица 1).

Таблица 1. Избранные расстояния (Å) в [Mes₂C₆H₃Te] (X=Cl, Br), [(OMe)₂C₆H₃Te]], [PhTeBr] и [PhTeI].

	Mes X	Te Mes	OMe Te Te I OMe MeO I MeO	Ph Te Br Ph	I Ph Te Te I Ph I Te Te Ph I Ph
TeTe,	X=Cl	X=Br	2.757(4)	2.7966(5)	3.152(5) -
Å					3.181(5)
	2.759(6)	2.783(1)			
Te-X, Å	2.498(5) -	2.693(1) -	2.922(5) - 2.984(5)	2.5995(6) -	2.819(4) -
	2.536(4)	2.701(1)		2.7842(6)	2.842(4)

Стерическое отталкивание между объемными органическими группами в [RTeI] (R = 2,6-[(2,4,6)- i Pr₃C₆H₂))₂C₆H₃- [35],2,6-(Mes)₂C₆H₃- Me- [33], R=2,6,4- t Bu₃C₆H₂- [36], (PhMe₂Si)₃C- [37]) разносит атомы теллура на несвязывающее расстояние. Тем не менее, в этих соединениях наблюдаются короткие контакты Te---Te (4.057(2)Å) объединяющие молекулы (Mes)₂C₆H₃TeI в димерные ассоциаты, а также короткие контакты Te---X (X=Cl, Br, I (Te-I 2.7180(6)Å, Te---I 3.7272(8)Å)), объединяющие молекулы [RTeX] в цепочки 2,6,4- t Bu₃C₆H₂TeX (X=Cl [38], Br [39], I [36]) (Схема 19) (Таблица 2).

Схема 19 Вторичные Те---Те и Те---І взаимодействия в кристаллических пространственно-затрудненных органотеллургалогенидних структурах RTeX.

Таблица 2. Те-I расстояния(Å) в 2,6-(Mes)₂C₆H₃Te Me, 2,6-((2,4,6)-^{*i*}-Pr₃C₆H₂))₂C₆H₃TeI, 2,6,4-^{*i*}-Bu₃C₆H₂TeI и (PhMe₂Si)₃CTeI.

	Me Me Me Me	i-Pr i-Pr i-Pr i-Pr i-Pr	¹ Bu ¹ Bu ¹ Bu	PhMe ₂ Si SiMe ₂ Ph SiMe ₂ Ph
Te-I, Å	2.676(1)	2.617(1)	2.7181(6)	2.7177(7)

Из-за наличия неподеленных электронных пар на теллуре и доступности низколежащей орбитали, разрыхляющей относительно связи Te-X (X=Cl, Br, I) теллургаллогениды проявляют Льюисовскую амфотерность, функционируя как доноры и акцепторы электронов. Атом теллура в органотеллургалогенидах (RTeX_n; n=1,3; X=Cl, Br, I) и особенно арилтеллургалогенидах (ArTeX, X=Cl. Br, I) — проявляет выраженную электрофильность, что объясняет существование большого количества комплексов типа $L \rightarrow TeX_nAr$ (L = органические P, N, O, S, Se донорные лиганды или внутримолекулярно связанные группировки) [40,41] и отсутствие до недавнего времени даже попыток получения комплексов с органотеллургалогенидами в качестве донорных лигандов.

Было известно только, что обработка ArTeC1₃ карбонилами никеля и железа, Ni(CO)₄ или Fe₂(CO)₉, в DMF приводит к образованию органических продуктов карбонилирования (Ar-COOH) и восстановления (Ar₂Te₂) соответственно [42]. А продукт

взаимодействия между [CpFe(CO)₂]Na и *p*-EtOC₆H₄TeCl₃ в THF при комнатной температуре был охарактеризован как CpFe(CO)₂(TeCl₂C₆H₄OEt), основываясь только на данных ИК и ¹H ЯМР [43].

Однако, арилтеллурид-тригалогениды ArTeX₃ (X=I, Br), получаемые при взаимодействии стехиометрических количеств диарилдителлура и элементарного галогена [44] нашли применение в органической химии из-за их стерео и регио-селективного присоединения по концевой тройной C-C связи. Продукт реакции зависит от полярности растворителя. Так, например, при взаимодействии RTeBr₃ с терминальным ацетиленом в метаноле образуется преимущественно Е-изомер, тогда как если реакцию проводить в неполярном бензоле преимущественно образуется соответствующий Z-изомер [45, 46] (Схема 20).

Схема 20

Стоит обратить внимание на то, что реакции идут долго и в жестких условиях (кипячение в течение длительного периода времени), продукт образуется с небольшим выходом, а с RTeI₃ до недавнего времени считалось, что данные реакции не идут вообще [47]. По сравнению со взаимодействием PhTeBr₃ или PhTeCl₃ с PhC=CH (кипячение 3-10 ч.) реакция PhTeI₃ с PhCCH идет намного дольше (кипячение около 48 часов). Однако, при замене фенилацетилена PhC=CH на ферроценилацетилен FcC=CH реакции с PhTeX₃ (X=Br, I) идут уже при комнатной температуре, достаточно быстро (от 30 до 60 минут) и с хорошим выходом [48].

Первая попытка внедрения [PhTeI] в координационную сферу переходного металла прямым взаимодействием исходного (созданного *in sutu* из Ph₂Te₂ и I₂) с Fe(CO)₅ в эфире при комнатной температуре дала мономерный комплекс (CO)₃FeI₂(Ph₂Te₂), содержащий дифенилдителлуридный лиганд [49].

Возникновение дифенилдителлурида объяснимо, если [PhTeI] в растворе существует в виде PhTe-TeI₂Ph (по аналогии с PhTe-TeBr₂Ph) и идет его окислительное присоединение к пентакарбонилу железа, наподобие присоединения PhRTeI₂, с образованием (CO)₃FeI₂(PhTeR) [50] или (CO)₃FeI₂(PhTeHC=CPhI) [47] (Схема 21).

В то же время окислительное присоединение PhTeX₃ (X=Br, I) к Fe(CO)₅ с помощью в эфирном растворе при комнатной температуре приводит к комплексам (CO)₃FeX₂(PhTeX) (X= I, Br) [51] (Схема 22), устойчивым на воздухе при комнатной температуре.

Схема 22

В соответствии с данными PCA, лиганд PhTeX (X=Br, I) в комплексах координируется как основание Льюиса с атомом железа и стабилизируется дополнительной координацией $X \rightarrow Te$, ведя себя как кислота Льюиса. Связь $X \rightarrow Te$ значительно укорочена по сравнению с суммой Ван-дер-Ваальсовых радиусов [52]. Этот короткий контакт искажает октаэдрическое координационное окружение атома железа (угол TeFeI равен 75.031(18)), а также завершает псевдотригональную бипирамидальную координацию вокруг центрального атома теллура.

При переходе от карбонила железа к карбонилу рутения, имеющего больший ковалентный радиус, реакцией $Ru_3(CO)_{12}$ с PhTeBr₃ в бензоле был получен устойчивый комплекс (CO)₂RuBr₂(PhTeBr)₂, содержащий уже два лиганда PhTeBr (вероятно, промежуточно образуется монозамещенный рутениевый аналог комплекса (CO)₃FeBr₂(PhTeBr), который далее диспропорционирует) (Схема 23) [53].

С другой стороны, реакцией $Re(CO)_5Cl$ с избытком фенилтеллурйодида [PhTeI] (полученного *in sutu* из Ph₂Te₂ и I₂) в горячем бензоле были получены оранжевые кристаллы устойчивого на воздухе комплекса (CO)₃Re(PhTeI)₃(µ₃-I), содержащего уже *три* лиганда PhTeI. Такую координацию трех PhTeI лигандов можно объяснить еще большим радиусом Re относительно Fe и Ru (Схема 24), причем

Схема 24

йодид-анион в (CO)₃Re(PhTeI)₃(μ_3 -I) не координируется с атомом Re (Re(1)…I(4) 4.067(1) Å), а связан лишь с тремя атомами Te (в среднем, Te---I 3.28 Å). Такая μ_3 -мостовая координация йодид-анионов также наблюдается в молибден-теллур-йодидных кластерах с остовом Mo₃(μ_3 -Te)₇(μ_3 -I) [54] и в солях теллура [(Ph₃Te)₄(μ_3 -I)₂(MesTeI₂)₂] [55], [*o*-C₆H₄(CH₂TeMe₂)₂(μ_3 -I)₄] [56]. Углы I–Te--I в комплексе (CO)₃Re(PhTeI)₃(μ_3 -I) - почти плоские (I(3)Te(3)I(4), 178.99(5)°) из-за присутствия неподеленной электронной пары на теллуре.

Дополнительное взаимодействие между PhTeX (X=Br, I) и галогенидными лигандами, может быть движущей силой в реакциях PhTeX с изоэлектронными комплексами (η^4 -C₄Me₄)Co(CO)₂I и (η^5 -C₅H₅)Fe(CO)₂I [57, 58] (Схема 25).

Альтернативно CpFe(CO)₂TeBr₂Ph может быть получен бромированием терминального фенилтеллуренильного лиганда в CpFe(CO)₂TePh [58]. При этом связь Fe-Te не разрывается и присоединение можно описать той же схемой, что для органических фенилтеллурэфиров [59] (Схема 26).

Схема 26

Соответственно, разрыв связи Te-Te в [CpMn(CO)₂]₂(µ-Ph₂Te₂) элементарным йодом не затрагивает связь Mn-Te и приводит к образованию комплекса CpMn(CO)₂(PhTeI) в виде темно-фиолетовых кристаллов, умеренно устойчивых на воздухе (Схема 27) [51].

Схема 27

По данным PCA лиганд PhTeI присоединяется к фрагменту CpMn(CO)₂ с образованием резко укороченной связи Mn-Te (2.4267(17) Å), которая близка к расстоянию Mn-Te (2.486(2)Å) в исходном комплексе [CpMn(CO)₂]₂(µ-Ph₂Te₂) [60] и является кратчайшим расстоянием Mn-Te среди структурно охарактеризованных комплексов.

Органохалькогенатные комплексы переходных металлов в качестве лигандов

Гетерометаллические кластерные соединения с мостиковыми халькогенатными лигандами могут быть получены, например, при взаимодействии Hg[Fe(CO)₃NO]₂ с двумя эквивалентами Cp₂Ti(ER)₂ в ацетоне при комнатной температуре, приводящем к образованию комплексов Cp₂Ti(ER)₂Fe(NO)₂ [61]. С другой стороны, Hg[Fe(CO)₃NO]₂ реагирует с Cp₂Nb(ER)₂ с образованием комплексов (C₅H₅)₂Nb(ER)₂Fe(NO)(CO). Наконец, Hg[Co(CO)₄]₂, изоэлектронный аналог Hg[Fe(CO)₃NO]₂, не вступает в реакцию с Cp₂Ti(ER)₂, но реагирует в ацетоне с двумя эквивалентами Cp₂Nb(ER)₂ с образованием комплексы диамагнитны, что предполагает наличие связи между атомами Nb-Fe или Nb-Co, соответственно (Схема 28).

Схема 28

Реакция $[(Me_5C_5)Ir(CO)(TeTol)_2]$ с $[PtCl_2(COD)]$ приводит к смеси двух продуктов:двухъядерного $[(Me_5C_5)Ir(CO)(TeTol)_2PtCl_2]$ итрехъядерного $[{(Me_5C_5)Ir(CO)(TeTol)_2}_2Pt]Cl_2(Cxema 29).$

Аналогично идет реакция с [PdCl₂(cod)] при комнатной температуре, давая гетерометаллический комплекс [(Me₅C₅)Ir(CO)(TeTol)₂PdCl₂], содержащий две мостиковые TeTol группы (Схема 30).

Схема 30

Иначе идут реакции $[(Me_5C_5)Ir(CO)(TeTol)_2]$ с двумя эквивалентами комплексов нульвалентных палладия и платины, $[Pd(PPh_3)_4]$ или $[Pt(PPh_3)_3]$ [62] (Схема 31). При этом образуются треугольные кластеры $[(Me_5C_5)Ir(CO)(Te)_2\{M(Tol)(PPh_3)\}_2]$ (M = Pd, Pt), т.е. реакция протекает путем внедрения нульвалентного металла по связи Te-C, причем промежуточный комплекс $[(Me_5C_5)Ir(CO)(Te)(TeTol)Pt(Tol)(PPh_3)]$ был выделен в реакции исходного иридиевого комплекса с одним эквивалентом [Pt(PPh_3)_3].

Реакции $[(Me_5C_5)Ir(CO)(TeTol)_2]$ с $[((Me_5C_5)MCl_2)(Cl_2)]$ (M = Ir(III), Rh(III)) проводятся при комнатной температуре и в хлористом метилене с образованием в качестве продуктов смеси различных цис- и транс-изомеров биядерных гомо- и гетерометаллических кластеров $[(Me_5C_5)Ir(CO)(TeTol)_2M(Me_5C_5)Cl]Cl$ (M = Rh, Ir), содержащих мостиковые TeTol группы.

$$Cp^{*} = Me_{5}C_{5}$$

$$M = Rh, Ir$$

Реакция $[(Me_5C_5)Ir(CO)(TeTol)_2]$ с эквимолярным количеством $[RuH(cod)(MeCN)_3][BPh_4]$ приводит к образованию комплекса состава $[(Me_5C_5)Ir(H)(TeTol)_2Ru(CO)(cod)][BPh_4]$. Расстояние Ir — Ru равно 2.9037(5) Å, что соответствует одинарной связи (Схема 32).

Схема 32

Стоит заметить, что $[(Me_5C_5)Ir(CO)(TeTol)_2]$ может реагировать с 0.75 эквивалентами $[((Me_5C_5)Ru)_4(Cl)_4]$ с получением четырехъядерного комплекса $[(Me_5C_5)IrCl{Te(Tol)Ru(Me_5C_5)}_2Ru(Me_5C_5)(CO)]Cl_2$, где два атома рутения координированы с толильными группировками по пи-ареновому типу и не связаны с металлхалькогенидным ядром кластера (Схема 32).

Приведенные выше примеры показывают, что подавляющее большинство комплексов переходных металлов стабилизированы за счет двух и более TePh- мостиков. Примеры моно- TePh-мостиковых комплексов достаточно редки.

Один из таких примеров – это биядерный гетерометаллический комплекс $[Cb^*Co(CO)_2(\mu\text{-TePh})W(CO)_5]$, который образуется при комнатной температуре в THF из $Cb^*Co(CO)_2$ TePh и $W(CO)_5$ THF [63] (Схема 33).

Взаимодействие CpFe(CO)₂TePh (I) с тетрафторборатом феррициния Fc⁺BF₄, как окислителем (наблюдается образование дифенилдителлура), приводит к образованию ионного комплекса цепочечного строения {[CpFe(CO)₂]₂(μ -TePh)}BF₄ (II), вероятно, путем присоединения I к возникающему катиону CpFe(CO)₂⁺. Декарбонилирование II с помощью Me₃NO и последующее добавление I приводит к образованию трехъядерного ионного комплекса {[CpFe(CO)₂(μ -TePh)₂]Fe(CO)Cp}BF₄. С другой стороны, при нагревании I в толуоле с PPh₃ происходит замена одной CO-группы на PPh₃ и образуется комплекс CpFe(CO)PPh₃TePh, реагирующий с катионом [CpMn(CO)₂(NO)]PF₆ с образованием биядерного гетерометаллического ионного комплекса [CpFe(CO)(PPh₃)(μ -TePh)Mn(CO)(NO)Cp] [64] (Схема 34).

Схема 34

ГЛАВА 2 ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ.

2.1. Карбонильные комплексы хрома и железа с диорганодихалькогенидными (R₂E₂ E=Te, Se) лигандами.

При УФ-облучении $Cr(CO)_6$ в THF происходит замена одной CO группы на молекулу THF с образованием $Cr(CO)_5$ (THF). При дальнейшей обработке этого аддукта эквимольным количеством дифенилдиселена, Ph_2Se_2 , образуются желто-оранжевые кристаллы нового комплекса $Cr(CO)_5(Ph_2Se_2)$ **1**, в котором пентакарбонилхромовый фрагмент присоединяется к Ph_2Se_2 через один атом халькогена (Схема 1).

Схема 1. Образование комплекса Cr(CO)₅(Ph₂Se₂).

В реакции $Cr(CO)_5(THF)$ с Ph_2Se_2 в соотношении 2:1 цвет раствора меняется с оранжевого на фиолетовый, что может свидетельствовать о возможном образовании комплекса [$Cr(CO)_5$]₂(μ -Ph₂Se₂)], подобного известному [$CpMn(CO)_2$]₂(μ -Ph₂Te₂)] [60], однако очень неустойчивого.

Комплекс 1 хорошо растворим в CH₂Cl₂, THF и нерастворим в гексане и гептане, охарактеризован по данным элементного анализа, ИК-спектроскопии (содержит полосы валентных колебаний CO групп при 1935 и 2060 см⁻¹) и PCA. По данным рентгеноструктурного анализа (Рис.1) расстояние Se-Cr (2.240(6) Å) резко укорочено по сравнению с суммой ковалентных радиусов ($R_{Se}+R_{Cr}=2.59$ Å) [65], а расстояние Se-Se в комплексе 1 (2.3723(5) Å) удлинено по сравнению со свободной молекулой Ph₂Se₂ (2.307Å) [66] (Таблица 1). В кристаллическом состоянии комплекс 1 образует бимолекулярные ассоциаты с короткими контактами между некоординированными атомами Se (межмолекулярное расстояние Se...Se 3.420 Å).

Габлица	1. I	1збранные	длины	связей	для	комплексов	1
		1					

Избранные расстояния А:		
Se(1) - Se(2)	2.3723(5)	
Se(2) - Cr(1)	2.240(6)	

Межмолекулярные расстояния Å:		
Se(1)Se(1)	3.420	

Рис.1 Молекулярная структура комплекса Cr(CO)₅(Ph₂Se₂) (1) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Аналогичный тип координации Ph₂Se₂ возникает в реакции взаимодействия [Ph₂Se₂·I₂] [31] с Fe(CO)₅ при соотношении 2:1 в диэтиловом эфире (Схема 2).

Схема 2. Образование комплекса $Fe(CO)_3I_2(Ph_2Se_2)$ (2).

Комплекс Fe(CO)₃I₂(Ph₂Se₂) **2** охарактеризован по данным элементного анализа и ИК-спектроскопии (содержит полосы валентных колебаний СО групп при 1985 см⁻¹, 2085 см⁻¹, 2130 см⁻¹), а также PCA.

По данным рентгеноструктурного анализа (Рис.2) в комплексе 2 железотрикарбонил-дийодидный фрагмент координирует молекулу Ph_2Se_2 по одному атому халькогена. Связь Se - Se (2.410(2) Å) в комплексе заметно длиннее, чем в **1**, и также удлинена по сравнению со свободной молекулой Ph_2Se_2 (2.307Å) [66]. Связь Se - Fe (2.425(2) Å) укорочена по сравнению с суммой ковалентных радиусов ($R_{Se}+R_{Fe}=2.52$ Å) [65]. Комплекс **2** изоструктурен известному (CO)₃FeI₂(Ph₂Te₂) [49] и в кристаллическом состоянии образует димерные ассоциаты с укороченными внутри- и межмолекулярными контактами халькоген-галоген (Таблица 2).

Рис.2 Кристаллическая структура 2 показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Длина связи в Å				
Связь	E=Te	E=Se		
Fe(1)-E(1)	2.5724(6)	2.425(2)		
Fe(1)-I(1)	2.6482(7)	2.626(2)		
E(1)-E(2)	2.7705(5)	2.410(2)		
FeE*	2.7	2.52		
EE**	2.737	2.287		
Межмолекулярные расстояния Å				
E(2)E(2)	3.800	3.958(1)		
E(2) I2	3.668	3.740(2)		

Таблица 2. Основные длины связей для комплексов 2 и Fe(CO)₃I₂(Ph₂Te₂).

* Сумма ковалентных радиусов железо-халькоген

**Расстояние халькоген-халькоген в свободной молекуле Ph2Te2 и Ph2Se2

Образование комплекса 2 из формально мономерного PhSeI становится понятным ввиду образования комплекса с переносом заряда, $Ph_2Se_2*I_2$ [31], при йодировании дифенилдиселена (Схема 3). Вероятно, он на первой стадии йодирует карбонил железа до Fe(CO)₄I₂, в котором далее идет замещение одной CO на Ph₂Se₂.

Схема 3. Строение фенилхалькогалогенидов [PhTeI]₄ [27,28], PhTe-TeBr₂Ph [33], Ph₂Se₂*I₂ [31]

Более сложным образом проходит галогенирование дифенилдителлура. В кристаллическом состоянии [PhTeI] может быть описан как тетрамер с полноценными связями Te-I и удлиненными Te-Te. В то же время в растворе фенилтеллуренилбромид [PhTeBr] представляет собой соединение PhTe-TeBr₂Ph, в котором атомы Te находятся в двух разных степенях окисления [33] (Схема 3). В свою очередь, ферроценилтеллуренилгалогениды FcTe-TeX₂Fc (X=Cl (3), Br (4), I (5)), полученные нами галогенированием диферроценилдителлура, именно в кристаллическом состоянии, по данным PCA (Рис. 3), содержат гетеровалентные атомы теллура [67] (Схема 4). При этом атомы галогена находятся только при одном из атомов теллура и реализуется стандартное T-образное лигандное окружение для 4-х валентного Te. Структура приведена только для FcTe-TeI₂Fc (5), так как бромид (4) и хлорид (3) построены аналогично.

Схема 4. Строение ферроценилтеллуренилгалогенилов.

Рис.3 Кристаллическая структура FcTe-TeI₂Fc (5) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Интересно, что в кристаллах всех трех галогенидов негалогенированный атом теллура (формально Te^{II}) заметно отклонен к атому железа ферроценильного фрагмента из плоскости циклопентадиенильного кольца, причем наблюдается сокращение расстояния Fe(2)---Te(2) при движении от дийодида (3.3714(6) Å) к дихлориду (3.293(3) Å), в то время как соседнее расстояние Fe(1)-Te(1) в том же ряду существенно больше и слабо меняется в этом ряду (FcTe-TeI₂Fc 3.7428(5)Å, FcTe-TeBr₂Fc 3.710(2) Å, FcTe-TeCl₂Fc 3.692(3) Å). Угол между атомом Te(2) и плоскостью соседнего Ср-кольца увеличивается в этом же направлении от 15° в йодиде до 20° в хлориде. Это больше чем отклонение порядка 10-16° наблюдаемое в борилированных ферроценах [68, 69], и находится в пределах 14.6° ~ 20.7° наблюдаемых в α -ферроценильных карбокатионах [C₅H₅FeC₅H₄C(C₆H₅)₂]⁺[BF₄]⁻ [70], $[C_5H_5FeC_5H_4(cyclo-C_3(C_6H_5)_2)]^+[BF_4]^-$ [71] (Рис. 4). Следует отметить, что у бора и карбокатионов имеется вакантная орбиталь, в то время как теллур в данном случае имеет формально 18-электронное окружение. Наши расчеты методом DFT для модельного ферроценилтеллуридного катиона [FcTe]⁺ предсказывают отклонение атома Te из плоскости Ср-кольца порядка 40°, что близко к экспериментально наблюдаемым 44.8° в структуре α -ферроценилкремниевого катиона [C₅H₅FeC₅H₄Si(CMe₃)Me]⁺₂[B₁₂C₁₂]²⁻ [72] (Рис. 5). Это логично объяснить взаимодействием заполненных 3d орбиталей Fe с HBMO теллуридного лиганда [73].

Рис. 4 Отклонение Те от плоскости Ср в соединениях **3-5** в сравнении с отклонением атомов Si, B и C, имеющих вакантную орбиталь, в соответствующих замещенных ферроценильных производных.

Однако расчеты (DFT/NBO) показывают небольшой вклад такого взаимодействия, в то время как основным донором в ферроценильном фрагменте выступает π -плотность Сркольца. Этот результат также подтверждается сравнительным анализом данных Мессбауэровской спектроскопии, приведенных в работе [74] для дибромборных и карбокатионных производных ферроцена, и нашими данными, полученными для FcTeTeBr₂Fc (**4**) (Рис. 5).

Рис.5 ⁵⁷ Fe Мессбаэровский спектр FcTeTeBr₂Fc при 95.4 К

Важную информацию о строении ферроценилтеллургалогенидов в растворе дает 125 Te-ЯМР спектр, содержащий в случае биядерного дибром-производного FcTe-TeBr₂Fc два сигнала при 860 и 1317 м.д., тогда как дийодидный аналог в растворе дает только один сигнал при 975 м.д., вероятно, относящийся к моноядерной частице FcTeI. Это согласуется с присутствием лишь одной волны одноэлектронного обратимого окисления при ЦВА йодида, хотя даже для негалогенированного диферроценилдителлура наблюдаются две обратимые одноэлектронные волны (Eox 0.5 v (1e), 0.7 v (1e); в CH₂Cl₂ относительно Аg-электрода с фоновым электролитом Bu₄N⁺PF₆⁻) [75].

Химическим свидетельством моноядерного строения FcTeI в растворе является реакция дийодида диферроценилдителлура с йодистым метилом, приведшая к образованию FcTeMeI₂ **6** (Схема 5) (Рис.6).

Схема 5. Образование комплекса $FcTeMeI_2$ (6).

Рис.6 Кристаллическая структура FcTeMeI₂ (6) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны. Длины связей Te(1) – I(2) 2.996(1), Te(1) – C(1) 2.130(9), Te(1) – I(1) 2.857(1), Te(1) – C(2) 2.10(1) Å

Попытки получить ферроценилселенид-галогениды, исходя из 1,1'триселенферроцена и брома, приводят к выделению исключительно продукта одноэлектронного окисления ферроценильного фрагмента, [FcSe₃]⁺[FeBr₄]⁻ (7) (Схема 6) (Рис. 7).

Рис. 7 Молекулярная структура [FcSe₃]⁺[FeBr₄]⁻ (7) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Особенности строения органоселен и –теллургалогенидов объясняют их различную реакционную способность при взаимодействии с комплексами переходных металлов.

Так, например, при взаимодействии двух молей [PhTeI] [27, 28] с одним молем Fe(CO)₅ в хлористом метилене на первой стадии образуется известный комплекс (CO)₃FeI₂(Ph₂Te₂) [49], в котором железотрикарбонилдийодидный фрагмент координирует молекулу Ph₂Te₂. На второй стадии в реакцию вступает еще один моль Fe(CO)₅ и образуется новый биядерный димерный комплекс железа [(CO)₃Fe(I)TePh]₂ **8**, который

был выделен в виде достаточно устойчивых на воздухе оранжевых кристаллов (Схема 7). Здесь присоединение электронодефицитного фрагмента Fe(CO)₃ сопровождается разрывом связи Te-Te (двухэлектронодонорный лиганд Ph₂Te₂ заменяется на два трехэлектронодонорных мостика TePh), что установлено методом PCA (Puc.8).

Схема 7. Образование комплекса [(CO)₃Fe(I)TePh]₂ (8)

Комплекс **8** хорошо растворим в органических растворителях (CH₂Cl₂, THF), нерастворим в предельных углеводородах (гексан, гептан), охарактеризован по данным элементного анализа и ИК-спектроскопии (содержит полосы валентных колебаний СО групп при 2060 см⁻¹, 2020 см⁻¹). По данным рентгеноструктурного анализа расстояния Те-Fe в комплексе **8** (2.6012(2) - 2.6110(3) Å) укорочены по сравнению с суммой ковалентных радиусов ($R_{Te}+R_{Fe}=2.70$ Å) [65] (Таблица 3). В кристаллическом состоянии комплексе **8** образует димерные ассоциаты за счет коротких контактов между атомами халькогена и π -системой фенильного кольца (Рис.8). Такие Те--- π взаимодействия были ранее описаны в обзоре [76].

Избранные расстояния Å:		
Связь	Длина	
Fe(2)I(3)	2.5759(3)	
Fe(2)Te(2)	2.6094(3)	
Fe(1)I(1)	2.6454(3)	
Fe(1)Te(1)	2.6012(2)	
Fe(1)Te(2)	2.6110(3)	
Fe(1)Fe(2)	3.8851(4)	
Связь	Сумма ковалентных радиусов	
FeFe	2.64	
FeTe	2.70	
FeI	2.71	

Таблица 3. Основные длины связей для комплекса 8

Рис.8 Молекулярная и кристаллическая структура комплекса [(CO)₃Fe(I)TePh]₂ (8) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны. Межмолекулярные расстояния (Å): Те --- центр фенильного кольца 3.641.

В аналогичной реакции взаимодействия $[Ph_2Se_2 * I_2]$ [31] с двумя молями Fe(CO)₅ селенидный комплекс, подобный **8**, не наблюдался, но одновременно с красными палочковидными кристаллами **2** кристаллизуется незначительное количество тонких красных ромбовидных кристаллов биядерного железного трис-фенилселинид мостикового катионного комплекса с полийодидным анионом $(I_5)^-$ на внешней сфере $[(CO)_3Fe(\mu-SePh)_3Fe(CO)_3]^+(I_5)^-$ **9** (Схема 8). Вероятно, промежуточно образующийся аналог комплекса **8** присоединяет один фрагмент PhSeI (образуя трехмостиковый катион), причем атомы йода (вместе с молекулой йода) образуют пентайодный моноанион.

Схема 8. Образование комплексов $Fe(CO)_{3}I_{2}(Ph_{2}Se_{2})$ (2) и $[(CO)_{3}Fe(\mu-SePh)_{3}Fe(CO)_{3}]^{+}(I_{5})^{-}$ (9).

По данным рентгеноструктурного анализа (Рис.9) связи Se-Fe в комплексе 9 укорочены (2.430(1)-2.446(1) A), как в 1 и 2, по сравнению с суммой ковалентных радиусов ($R_{Se}+R_{Fe}=2.52$ Å) [65].

Рис.9 Кристаллическая структура комплекса $[(CO)_3Fe(\mu-SePh)_3Fe(CO)_3]^+(I_5)^-(9)$ показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.
2.2. Реакции комплексов переходных металлов с фенилхалькогалогенидами.

Различная реакционная способность органотеллур- и органоселен-галогенидов наблюдается также при взаимодействии PhTeBr₃ с другими карбонилами металлов из подгруппы железа. Так, из Ru₃(CO)₁₂ в горячем бензоле образуется комплекс (CO)₂RuBr₂(PhTeBr)₂ [53], в котором вокруг рутениевого центра координируются два PhTeBr лиганда.

С другой стороны, при взаимодействии $Ru_3(CO)_{12}$ с PhSeBr₃ в бензоле образуется кластер [((CO)₃RuBr₂)₂(µ-SePh)₂Ru(CO)₄] **10** выделенный в виде желтых кристаллов и, по данным PCA, имеющий цепочечное строение (Схема 10). В нем не наблюдается координация PhSeBr лиганда – вместо этого три атома Ru связываются за счет двух PhSe мостиков (Puc.10). Однако его образование легко представить, как первоначальное возникновение моноядерного [(CO)₃RuBr₂(PhSeBr)], аналогичного известному [(CO)₃FeI₂(PhTeI)], две молекулы которого дебромируются по атомам селена за счет реакции с избытком $Ru_3(CO)_{12}$.

Схема 10. Образование [(CO)₂RuBr₂(PhTeBr)₂] и [((CO)₃RuBr₂)₂(µ-SePh)₂Ru(CO)₄] (10) комплексов.

Комплекс **10** хорошо растворим в CH₂Cl₂, THF и нерастворим и предельных углеводородах (гексан, гептан); охарактеризован по данным элементного анализа и ИКспектроскопии (содержит полосы валентных колебаний CO групп: 2120 см⁻¹, 2060 см⁻¹, 2000 см⁻¹). По данным рентгеноструктурного анализа (Рис.10) расстояние Ru-Se в комплексе **10** (Таблица 4) укорочено по сравнению с суммой ковалентных радиусов($R_{Se}+R_{Ru}=2.66$ Å) [65] - по аналогии с укорочением расстояний халькогенпереходный металл в комплексах **1**, **2**, **8**.

Рис.10 Молекулярная структура комплекса [((CO)₃RuBr₂)₂(μ -SePh)₂Ru(CO)₄] (**10**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Избранные расстояния Å:		Сумма ковалентных радиусов Å
Ru(1)Se(1)	2.5905(13)	
Ru(2)Se(1)	2.5448(16)	2.66
Ru(2)Br(1)	2.5415(17)	2.66
Ru(2)Br(2)	2.5512(17)	2.66

Таблица 4. Основные длины связей для комплекса 10

В литературном обзоре было показано, что при переходе от карбонила рутения к пентакарбонилхлориду рения, имеющему больший радиус атома металла, реакцией Re(CO)₅Cl c [PhTeI] образуется комплекс, в котором координируется уже 3 PhTeI-лиганда.

Однако, в аналогичной реакции $\text{Re}(\text{CO})_5\text{Cl}$ с $[\text{Ph}_2\text{Se}_2*\text{I}_2]$ не наблюдается разрыв связи Se-Se, а образуется новый димерный рениевый комплекс $[\text{Re}(\text{CO})_3(\mu-\text{I})]_2(\mu-\text{Ph}_2\text{Se}_2)$ **11** (Схема 11), в котором координируются два мостиковых атома I и мостиковая молекула Ph₂Se₂.

Схема 11. Образование комплекса [Re(CO)₃(µ-I)]₂(µ-Ph₂Se₂) (11)

Комплекс **11** хорошо растворим в CH₂Cl₂, THF и плохо растворим в предельных углеводородах (гексан, гептан), охарактеризован по данным элементного анализа и ИКспектроскопии (содержит полосы валентных колебаний СО групп: 2045 см⁻¹, 2025 см⁻¹, 1945 см⁻¹, 1920 см⁻¹). По данным рентгеноструктурного анализа (Рис.11) расстояние халькоген-переходный металл (Re-Se 2.5927(6) Å) в комплексе **11** так же, как в **1**, **2**, **8**, **10**, укорочено по сравнению с суммой ковалентных радиусов($R_{Se}+R_{Re}=2.72$ Å) [65], однако связь Se-Se удлинена до 2.420(1) Å по сравнению со свободной молекулой Ph₂Se₂ (2.307Å) [66] (Таблица 5).

Рис.11 Молекулярная структура комплекса [Re(CO)₃(µ-I)]₂(µ-Ph₂Se₂) (**11**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Избранные расстояния Å		Сумма ковалентных радиусов
Se(1)Se(1)	2.420(1)	2.287*
Se(1)Re(1)	2.5927(6)	2.72
Se(1)Re(1)	2.5927(6)	2.72
I(1)Re(1)	2.8219(5)	2.9
I(1)Re(1)	2.8250(5)	2.9

Таблица 5. Основные длины связей для комплекса 11

*Расстояние Se...Se в свободной молекуле Ph₂Se₂

В реакции [CymenRuI₂]₂ с [PhTeI] представлялось возможным получить соединение с необычным типом координации [PhTeX] (X=Br, I) (Puc. 12 a), отличным от известного в $(CO)_3FeX_2(PhTeX)$ (X=I, Br) и $(CO)_2RuBr_2(PhTeBr)_2$ [53] (Puc. 12 b, c). Такое предположение о возможном способе координации было основано на способности [PhTeX] (X=Br, I) внедряться по связи М-галоген [53].

Рис. 12 (а) – ожидаемый тип координации в CymenRuI(µ-I)(PhTeI)

Однако ожидаемый тип координации не реализовался, а в результате реакции [CymenRuI₂]₂ с [PhTeI] в CH₂Cl₂ был выделен новый комплекс CymenRuI(μ -I)(PhTeI) **12**, в котором фрагмент [CymRuI₂] координирует фенилтеллуренилйодидный лиганд. При этом стабилизация лиганда PhTeI достигается не только за счет подачи НЭП теллура на атом железа, но и благодаря дополнительному внутримолекулярному связыванию теллура с галогенидным лигандом при атоме рутения, что приводит к типичному T-образному лигандному окружению теллура (Схема 12). Аналогичная ситуация наблюдается и в известных комплексах (CO)₃FeX₂(PhTeX) (X=I, Br) или (CO)₂RuBr₂(PhTeBr)₂ [53].

Схема 12. Образование комплекса CymenRuI(µ-I)(PhTeI) (12).

По данным рентгеноструктурного анализа (Рис.13) связь Те-Ru (2.5954(3) Å) сильно укорочена по сравнению с суммой ковалентных радиусов ($R_{Ru}+R_{Te}=2.84$ Å) [65] и мало отличается от связей Ru-Te в известном рутениевом комплексе с двумя координированными PhTeBr фрагментами (CO)₂RuBr₂(PhTeBr)₂ (2.610 Å) [53], причем в **12** не наблюдается увеличения расстояния Te-I(1) (2.7562(3) Å), которое почти не отличается от суммы ковалентных радиусов ($R_I+R_{Te}=2.77$ Å) [65] (Таблица 6). Отметим, что расстояние Te-----I_{Ru} (3.2283(3) Å) короче суммы Ван-дер-Ваальсовых радиусов ($Wr_{Te}+Wr_{O}=4.04$ Å) [52]. Впрочем, по данным ЯМР-спектроскопии и DFT расчетов, в растворе наблюдается синхронная миграция йодидных лигандов. Таким образом, обе связи Te-I находятся в динамическом равновесии, и ожидаемая структура (Рис. 12 (а))

реализуется в промежуточном состоянии. В кристаллическом состоянии комплекс 12 упаковывается в цепочки за счет коротких контактов Те-----С_{Ph} (3.573 Å) цименового фрагмента ($Wr_{Te}+Wr_C=3.76$ Å) [52] (Рис. 14).

Рис.13 Молекулярная структура CymenRuI(µ-I)(PhTeI) (12) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина Å	Сумма ковалентных радиусов Å
Te(1)I(1)	2.7562(3)	2.77
Te(1)I(3)	3.2283(3)	2.77/4.04*
I(3)Ru(1)	2.7405(4)	2.85
Ru(1)Te(1)	2.5954(3)	2.84
Ru(1)I(2)	2.7278(3)	2.85

Таблица 6. Основные длины связей для комплекса 12

**Сумма Ван-дер-Ваальсовых радиусов (Å)

Рис. 14 Кристаллическая структура комплекса CymenRuI(µ-I)(PhTeI) (**12**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны. Межмолекулярные расстояния Te---C 3.573Å.

2.3 Синтез и молекулярные структуры циклооктаеновых теллургалогенидов

Поскольку соединения PhTeX₃ оказались эффективными реагентами для получения органотеллур-галогенидных комплексов, то с целью получения новых исходных органотеллуртригалогенидов нами была изучена серия реакций с участием циклооктадиена (COD).

Так, например, при взаимодействии COD с $TeBr_4$ в CCl₄ в присутствии метанола или этанола образуются соответствующие продукты присоединения $TeBr_4$ только по одной двойной связи: (C₈H₁₂)(OMe)TeBr₃ **13** и (C₈H₁₂)(OEt)TeBr₃ **14** (Схема 13), которые были выделены в виде устойчивых на воздухе желтых кристаллов. Соединения **13** и **14** охарактеризованы по данным элементного анализа и PCA.

Схема 13. Образование (C₈H₁₂)(OMe)TeBr₃ (13) и (C₈H₁₂)(OEt)TeBr₃ (14)

По данным рентгеноструктурного анализа 8-метокси-4-циклооктенил-теллур трибромид **13** и 8-этокси-4-циклооктенил-теллур трибромид **14** были выделены в виде рацемических кристаллов содержащих (R, R)- и (S, S)- энантиомеры (группа P2₁/c).

Четыре атома в ближайшем окружении атома Te (C(3), Br(1), Br(2) and Br(3)) находятся на нормальных связывающих расстояниях от него, тогда как для пятого атома – атома кислорода метокси группы, расстояние Te...O (2.389(3) Å) заметно укорочено по сравнению с суммой Ван-дер-Ваальсовых радиусов (Wr_{Te}+Wr_O=3.58 Å) [52], таким образом, координационное окружение атома Te может быть описано как искаженная тригональная бипирамида. Димерные ассоциаты в твердом состоянии образуются за счет коротких межмолекулярных контактов между атомами Te и Br (3.739 Å) (Puc.15) (Wr_{Te}+Wr_{Br}=3.91 Å) [52] (Таблица 7).

Для соединения 14 характерны те же особенности геометрии, что и для 13. Однако, в отличие от 13, в кристалле 14 образует не димерные ассоциаты за счет взаимодействий Те...Вг, а цепочки за счет коротких межмолекулярных контактов между атомом Те и двойной связью циклооктадиенового лиганда (Рис.16) (Таблица 8), что можно объяснить стерическим (экранирующим) влиянием этильной группы.

G		T7 T (4 P)	Сумма	Сумма Ван-
Связь	X=Br(13)	X=1(15)	ковалентных	дер-
			радиусов Å	Ваальсовых
				радиусов Å
X(1)Te(1)	2.6562(5)	2.874(4)	2.58/2.77	3.91/4.04
X(2)Te(1)	2.5121(7)	2.739(4)	2.58/2.77	3.91/4.04
X(3)Te(1)	2.6880(5)	2.973(4)	2.58/2.77	3.91/4.04
C(3) Te(1)	2.189(3)	2.16(3)	2.12	3.76
O(1)Te(1)	2.416(3)	2.45(2)	2,04	3.58

Таблица 7. Основные длины связей для соединений 13 и 15

Рис.15 Кристаллическая структура соединения (C₈H₁₂)(OMe)TeBr₃ показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны. Межмолекулярные расстояния Te...Br 3.739Å.

Связь	Длина Å	Сумма ковалентных радиусов Å
Br(1)Te(1)	2.6826(5)	2.58
Br(2)Te(1)	2.5224(5)	2.58
Br(3)Te(1)	2.6632(6)	2.58
C(1) Te(1)	2.182(3)	2.12/3.76*
O(1)Te(1)	2.389(3)	2.04/3.58*

Таблица 8. Основные длины связей для соединения 14

*Сумма Ван-дер-Ваальсовых радиусов (Å)

Рис.16 Кристаллическая структура соединения (C_8H_{12})(OEt)TeBr₃ показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны. Межмолекулярные расстояния Te...C₁^{*} 3.577Å, Te...C₂^{*} 3.480. (C₁^{*} - центроид C₅A и C₆A, C₂^{*} - центроид C₅ и C₆).

Для превращения 13 и 14 в соответствующие йодиды их обрабатывали KI в ацетоне, при этом происходит замещение Br на I и образуется $(C_8H_{12})(OMe)TeI_3$ 15 и $(C_8H_{12})(OEt)TeI_3$ 16 (Схема 14) соответственно. Соединения 15 и 16 были выделены в виде устойчивых на воздухе красных кристаллов и охарактеризованы по данным элементного анализа и PCA.

Схема 14. Образование (C₈H₁₂)(OMe)TeI₃ (14) и (C₈H₁₂)(OEt)TeI₃ (16)

Молекулярная структура 16 сходна со структурой гомологичного 15, наблюдаются такие же особенности геометрии, что и в соединение 13, однако в кристаллическом состоянии соединение 16 образует не димерные ассоциаты за счет взаимодействий Те...I (как в 15 (Таблица 9)), а цепочки за счет коротких межмолекулярных контактов между атомам Те и двойной связью циклооктадиенового лиганда (Таблица 9).

Связь	Длина Å	Сумма ковалентных радиусов Å
I(1)Te(1)	2.8660(5)	2.77
I(2)Te(1)	2.7304(4)	2.77
I(3)Te(1)	2.9136(5)	2.77

Таблица 9. Основные длины связей для соединения 16

C(1) Te(1)	2.182(3)	2.12/3.76*
O(1)Te(1)	2.462(3)	2.04/3.58*

*Сумма Ван-дер-Ваальсовых радиусов Å.

Интересно отменить, что присоединение {SeBr₂} к COD идет по обеим двойным связям с образованием соединения (C_8H_{12})Br₂Se **17**, при дальнейшей обработке которого элементарным бромом *не наблюдается* образование 3с-4е связи Br-Se-Br (по аналогии с Te), а вместо этого на атоме Se координируется молекула Br₂ и образуется (C_8H_{12})Br₂SeBr₂ **18** (Схема 15), (Таблица 10), (Рис. 17, 18). Координация Br₂ в **18** в очередной раз подтверждает тезис о нехарактерности 3с-4е (гипервалентного) связывания для Se.

Схема 15. Образование (C₈H₁₂)Br₂Se (17) и (C₈H₁₂)Br₂SeBr₂ (18)

Рис. 17 Молекулярная структура (C_8H_{12}) Br_2Se (**17**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Молекулярная структура (C₈H₁₂)Br₂SeBr₂ (**18**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

$(C_8H_{12})Br_2Se$		Сумма	$(C_8H_{12})^2$	Br ₂ SeBr ₂
Связь	Длина Å	ковалентных	Связь	Длина Å
		радиусов Å		
C(2)Se(1)	1.968(1)	1.96	C(1)Se(1)	1.99(2)
Se(1)C(2)	1.968(1)	1.96	Se(1)C(5)	1.99(1)
C(3)Br(2)	2.000(1)	1.96	C(8)Br(3)	1.97(2)
C(3)Br(2)	2.000(1)	1.96	C(4)Br(4)	1.98(1)
		2.4	Br(1)Se(1)	2.508(3)
		2.4	Br(1)Br(2)	2.623(3)

Таблица 10. Основные длины связей для соединений 17 и 18

2.4 Окислительное присоединение RTeBr₃ к [CpFe(CO)₂]₂ с разрывом связи Fe-Fe

Ранее для получения металорганических производных содержащих лиганд TeX₂Ph (X= Se, Te) в нашей лаборатории были развиты два синтетичесих подхода: внедрение PhTeX (X=Br, I) по связи металл-йод и галогенирование терминального TePh лиганда элементарным галогеном, аналогично галогенированию органических фенилтеллурэфиров (Схема 16) [77, 51].

Схема 16. Образование $LM(CO)_2TeX_2Ph$ (LM = CpFe, (η^4 -C₄Me₄)Co X = I) в реакции внедрения фрагмента [PhTeX] (X=Br, I) по связи металл-йод.

Если продолжить аналогию с органическими реакциями, то можно предположить, что окислительное присоединение органотеллур-тригалогенидов с металлорганическими соединениями, содержащими связь металл-металл, должно приводить к ее разрыву и образованию комплексов с терминальным лигандом TeX₂R.

Действительно, при взаимодействии [CpFe(CO)₂]₂ с PhTeBr₃ в кипящем THF были

Схема 17. Образование комплекса CpFe(CO)₂(TeBr₂Ph) (19)

Комплекс **19** охарактеризован по данным элементного анализа, ИК-спектроскопии (содержит полосы валентных колебаний СО групп: 2045 см⁻¹, 2000 см⁻¹) и РСА (параметры элементарной ячейки), которые показали идентичность полученного образца с ранее описаным нами CpFe(CO)₂(TeBr₂Ph) [58]. По данным рентгеноструктурного анализа (Puc.19) связь Fe-Te (2.499(3) Å) в комплексе **19**, так же как в **1**, **2**, **8**, **10**, укорочена по сравнению с суммой ковалентных радиусов($R_{Fe}+R_{Te}=2.7$ Å) [65] (Таблица 11).

Рис. 19 Молекулярная структура комплекса CpFe(CO)₂(TeBr₂Ph) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Caraa	Патина Å	
Связь	длина А	Сумма ковалентных радиусов А
Fe(1)Te(1)	2.499(3)	2.7
Br(1)Te(1)	2.7046(14)	2.58
C(5)Te(1)	2.121(15)	2.14
	× ,	

Таблица 11. Основные длины связей для комплекса 19

В аналогичной реакции $[CpFe(CO)_2]_2$ и $(C_8H_{12})(OMe)TeBr_3$ при нагревании в THF были получены желто-оранжевые кристаллы комплекса $CpFe(CO)_2(TeBr_2(OMe)(C_8H_{12}))$ **20**, а при дальнейщей обработке этого комплекса KI в ацетоне происходит замена Br на I с образованием $CpFe(CO)_2(TeI_2(OMe)(C_8H_{12}))$ **21** (Схема 18) в виде устойчивых на воздухе красных кристаллов.

Схема 18. Образование комплексов CpFe(CO)₂(TeX₂(OMe)(C₈H₁₂)) (X=Br (20), X=I (21).

Комплекс **20** был охарактеризован по данным элементного анализа и ИКспектроскопии (содержит полосы валентных колебаний СО групп: 2045 см⁻¹, 1995 см⁻¹). По данным рентгеноструктурного анализа (Рис.20) длина связи Fe-Te (2.5291(6) Å) в **20** близка к наблюдаемой в **19**, а расстояние Te...O удлинено по сравнению с исходным TeBr₃(OMe)(C₈H₁₂) на 0.38 Å (Таблица 12). То же относится к комплексу **21** (Таблица 12).

Рис.20 Молекулярные структуры комплексов CpFe(CO)₂(TeX₂(OMe)(C₈H₁₂)) (X=Br (**20**), X=I (**21**) показаны в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

	1	, ,	
Связь	X=Br (20)	X=I (21)	Сумма ковалентных радиусов Å
Fe(1)Te(1)	2.5291(6)	2.5448(5)	2.7
X(1)Te(1)	2.6986(6)	2.9432(5)	2.58/2.77
X(2)Te(1)	2.7718(5)	2.9886(5)	2.58/2.77
CTe(1)	2.195(3)	2.202(3)	2.14
OTe(1)	2.797(3)	2.830(2)	2.04/3.58*

Таблица 12. Основные растояния для комплексов 20 и 21

*Сумма Ван-дер-Ваальсовых радиусов

2.5 Взаимодействие ферроценилацетилена FcC≡CH с RTeBr₃

В литературном обзоре показано, что присоединение RTeX₃ (X=Hal) по концевой тройной связи C=C происходит стерео и регио-селективно, а продукт реакции зависит от полярности растворителя.

Реакции идут долго и в жестких условия (кипячение в течение длительного периода времени), с небольшим выходом продукта, а до недавнего времени считалось, что с RTeI₃ не идут вообще [78]. По сравнению со взаимодействием PhTeBr₃ или PhTeCl₃ с PhC=CH (кипячение 3-10 ч.) аналогичная реакция PhTeI₃ идет намного дольше (кипячение около 48 часов). Однако при замене фенилацетилена PhC=CH на ферроценилацетилен FcC=CH реакции с PhTeX₃ (X=Br, I) идут уже при комнатной температуре, достаточно быстро (от 30 до 60 минут) и с хорошим выходом [48].

В связи с этим было интересно изучить взаимодействие $(C_8H_{12})(OEt)TeBr_3$ **13** с ферроценилацетиленом FcC=CH, которое проходит в бензоле при комнатной температуре с образованием (Z)-FcBrC=CTeBr_2R (R=транс-8-этокси-4-циклооктенил) **22** (Схема 19). Реакция протекает гораздо медленней, чем в случае с PhTeX₃ (X=Br, I) [48], однако, добавление силикагеля катализирует данный процесс.

Схема 19. Образование (Z)-FcBrC=CTeBr₂(C₈H₁₂)(OEt) (22)

По данным рентгеноструктурного анализа (Рис. 21) в молекуле **22** контакт Те...О (2.664(5) Å) на 0.275 Å больше, чем в исходном **13**. Такое увеличение можно объяснить меньшей акцепторностью винил-бром-ферроценильного фрагмента, по сравнению с бромом. Стоит также заметить, что в **22** нет характерного для Те межмолекулярного взаимодействия Te-Br, как, например, в (Z)-FcXC=CTeX₂Ph (X=Br, I) [48], что можно объяснить стерическим эффектом объемной гало-винилферроценильной группы, а также дополнительным взаимодействием теллурового центра с атомом галогена при двойной связи. Направленность этой вторичной связи совпадает с ориентацией НЭП Те. Расстояние Te...Br (3.386(1) Å) короче чем сумма Ван-дер-Ваальсовых радиусов (3.90 Å) [52] (Таблица 13). Таким образом, с учетом дополнительных внутримолекулярных взаимодействий атом теллура находится в типичном псевдо-октаэдрическом окружении.

Рис.21 Молекулярная структура (Z)-FcBrC= CTeBr₂(C₈H₁₂)(OEt) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина Å	Сумма ковалентных радиусов Å
C(2)C(1)	1.31(1)	1.56
Te(1)Br(1)	2.695(1)	2.58
Te(1)Br(2)	2.665(1)	2.58
O(1)Te(1)	2.664(5)	2.04/3.58*
Te(1)Br(3)	3.386(1)	2.58/3.90*

Таблица 13. Основные расстояния для комплекса 22

*Сумма Ван-дер-Ваальсовых радиусов

2.6. Использование монодентатного теллурофенильного комплекса железа CpFe(CO)₂TePh как лиганда

В настоящее время описано большое количество комплексов переходных металлов с теллуроэфирами и органотеллуренилгалогенидами [RTeR'] (R'=Hal, Alkyl, Aryl) в качестве лигандов, в том числе хеллатирующих [79]. Однако родственные им металлсодержащие лиганды (M-Te-R) почти не использовались и до недавнего времени единственным таким примером было образование $[(\eta^4-Me_4C_4)Co(CO)_2(\mu-TePh)W(CO)_5]$ из $(\eta^4-Me_4C_4)Co(CO)_2$ TePh и $W(CO)_5$ (THF) [63]. Поэтому представлялось важным изучить реакционную способность [CpFe(CO)_2TePh], как аналога [RTeR'], в зависимости от особенностей строения: наличия НЭП на атоме Те и способности к обратному донированию электронов с атома металла на вакантные орбитали теллура.

Исходный моноядерный комплекс [CpFe(CO)₂TePh] был получен по модифицированной литературной методике [13, 77] (из [CpFe(CO)₂]₂ и Ph₂Te₂) (Схема 20) и был охарактеризован по данным элементного анализа и ИК – спектроскопии (содержит полосы валентных колебаний СО групп: 2005 см⁻¹, 1968 см⁻¹).

$[CpFe(CO)_2]_2 + Te_2Fc_2 \xrightarrow{toluene} 2CpFe(CO)_2TePh$

Схема 20. Образование комплекса CpFe(CO)₂TePh

Реакцией [CpFe(CO)₂TePh] с Fe(CO)₄I₂ в хлористом метилене был получен новый биядерный комплекс CpFe(CO)₂(μ -TePh)Fe(CO)₃I₂ **23**, в котором трикарбонилжелезодийодидный фрагмент координирует молекулу CpFe(CO)₂TePh (Схема 21). **23** был выделен в виде коричневых кристаллов, хорошо растворимых в CH₂Cl₂, THF, C₆H₆ и нерастворимых в гексане и гептане, охарактеризован по данным элементного анализа, ИК-спектроскопии и PCA. Полосы валентных колебания группы CO (CH₂Cl₂, 2080 см⁻¹, 2037 см⁻¹; 2014 см⁻¹, 1987 см⁻¹) смещены по сравнению с исходным CpFe(CO)₂TePh (2005 см⁻¹, 1968 см⁻¹), что, по-видимому, свидетельствует об уменьшении электронной плотности на атомах Fe в CpFe(CO)₂ и Fe(CO)₃I₂ (2137 см⁻¹, 2090 см⁻¹, 2072 см⁻¹ для Fe(CO)₄I₂).

Схема 21. Образование комплекса $CpFe(CO)_2(\mu$ -TePh)Fe(CO)₃I₂. 23

По данным рентгеноструктурного анализа (Рис. 22) связь Fe(1)-Te(1) (2.5690(4) Å) в полученном комплексе заметно укорочена по сравнению с исходным CpFe(CO)₂TePh (2.617 Å) из-за оттягивания электронной плотности с атома теллура. Однако оно, как и расстояние Fe(5)-Te(1) (2.6117(4) Å), укорочено по сравнению с суммой соответствующих ковалентных радиусов ($R_{Te}+R_{Fe}=1.38+1.32=2.71$ Å) [65], что обусловлено обратным донированием электронов с *d*-орбиталей атомов Fe на вакантные орбитали Te (Таблица 14).

Рис.22 Молекулярная структура комплекса CpFe(CO)₂(µ-TePh)Fe(CO)₃I₂ (**23**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Избранные расстояния Å		Сумма ковалентных радиусов
Fe(1)Te(1)	2.5690(4)	2.71
Te(1)C(11)	2.130(3)	2.11
Te(1)Fe(5)	2.6117(4)	2.71
Fe(5)I(1)	2.6482(4)	2.71
Fe(5)I(2)	2.6527(5)	2.71

Таблица 14. Основные длины связей для комплекса 23

Дальнейший выбор электронодефицитного комплекса рения для изучения координирующей способности CpFe(CO)₂TePh, как металлсодержащего лиганда, был обусловлен вышеописанным свойством рения координировать большее число теллуридных лигандов, вследствие большего атомного радиуса. Исходное соединение Re(CO)₅Cl получали в виде белого порошка по модифицированной литературной методике [80] при пропускании газообразного Cl₂ через раствор [Re(CO)₅]₂ в CCl₄ при 0°C. Комплекс был охарактеризован по данным элементного анализа и ИК-спектроскопии (CCl₄; v_{CO} , см⁻¹: 2157, 2062, 2032, 1958. 2070).

При кипячении Re(CO)₅Cl в THF происходит замена двух CO-групп на две молекулы THF с образованием Re(CO)₃(THF)₂Cl, который устойчив в инертной атмосфере в растворе и был охарактеризован по данным ИК-спектроскопии.

Взаимодействие CpFe(CO)₂TePh с Re(CO)₃(THF)₂Cl в THF приводит к образованию нового гетерометаллического трехъядерного комплекса [CpFe(CO)₂(µ-TePh)]₂Re(CO)₃Cl **24** (Схема 22), выделенного из реакционной смеси в виде призматических коричневых кристаллов, относительно устойчивых на воздухе и пригодных для PCA.

Схема 22. Образование комплекса [CpFe(CO)₂]₂(µ-TePh)₂Re(CO)₃Cl (24)

По данным ИК-спектроскопии в твердом состоянии **24** сочетает в себе смещенные полосы валентных колебаний СО-групп в рениевом фрагменте (толуол: 1913, 1894; 2005 см⁻¹) и металлолигандном СрFe- фрагменте (толуол: 2030, 2022; 1981 см⁻¹).

По данным рентгеноструктурного анализа (Рис. 23) комплекс **24** имеет типичную для дизамещенных производных карбонил-галогенидов рения *fac*-конформацию CO групп. При этом связи Fe-Te (2.569 Å) и Re-Te (2.8165(3) Å и 2.8003(4) Å) укорочены по сравнению с суммой соответствующих ковалентных радиусов (2.70 и 2.89Å, соответственно) [65] (Таблица 15). Однако связи Re-Te удлинены по сравнению с 2.7554(12) Å в Re(CO)₃(μ -TeIPh)₃(μ ₃-I), имеющем более электроноакцепторные лиганды [53].

Рис.23 Молекулярная структура комплекса [CpFe(CO)₂]₂(µ-TePh)₂Re(CO)₃Cl] (**24**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов А́
Re(1)Te(3)	2,8165(3)	2,89
Fe(6)Te(3)	2,5716(7)	2,7
Re(1)Te(2)	2,8003(4)	2,89
Fe(1)Te(2)	2,5714(7)	2,7
Te(2)C(8)	2,101(8)	2,11
Te(3)C(17)	2,132(2)	2,11

Таблица 15. Основные длины связей для комплекса 24

2.7. Использование хелатирующего теллурофенильного комплекса платины, как лиганда

В рамках изучения новых подходов к синтезу металлоциклов была проведена реакция комплекса **24** с известным комплексом dppePt(TePh)₂ [81] в кипящем толуоле. В надежде, что заменятся по одной CO у двух атомов железа на теллурофенильные фрагменты у платины. Однако произошло переметаллирование **24** с заменой двух молекул CpFe(CO)₂TePh на молекулу хелатного комплекса платины и образовался комплекс dppePt(μ -TePh)₂Re(CO)₃Cl **25**, выделенный в виде желтых призматических кристаллов (Схема 23).

25 также был получен встречным синтезом из dppePt(TePh)₂ [81] и Re(CO)₅Cl в кипящем толуоле. (Схема 23)

Схема 23. Образование комплекса dppePt(µ-TePh)₂Re(CO)₃Cl (25)

Комплекс **25** хорошо растворим в CH₂Cl₂, THF, кипящем толуоле и нерастворим и предельных углеводородах (гексан, гептан); охарактеризован по данным элементного анализа и ИК-спектроскопии.

По данным РСА (Рис.24) гетерометаллический биядерный платинорениевый комплекс **25** содержит две мостиковые группы TePh между атомами платины и рения. Связи Pt-Te (2.6329(4) и 2.6451(4) Å) и Re-Te (2.7848(4) и 2.7909(4) Å) укорочены по сравнению с суммой ковалентных радиусов ($R_{Pt} + R_{Te} = 2.74$ Å, $R_{Re} + R_{Te} = 2.89$ Å) [65]. (Таблица 16) ИК-спектр полученного соединения содержит три полосы валентных колебаний трех фациально расположенных CO групп (2003 см⁻¹, 1898 см⁻¹, 1879 см⁻¹), которые не слишком отличаются от найденных для **24**.

Рис.24 Молекулярная структура комплекса dppePt(µ-TePh)₂Re(CO)₃Cl (25) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Re(1)Te(4)	2.7909(4)	2.89
Re(1)Te(3)	2.7848(5)	2.89
Pt(1)Te(4)	2.6329(5)	2.74
Pt(1)Te(3)	2.6451(4)	2.74
Pt(1)P(1)	2.268(1)	2.43
Pt(1)P(2)	2.259(2)	2.43

Таблица 16. Основные длины связей для комплекса 25

2.8. Синтез и молекулярные структуры гетерометаллических

ферроценилтеллуридных комплексов платины

Замена фенильных заместителей при атомах теллура на ферроценильные имеет четыре важных следствия: 1) ферроценил значительно более электронодонорен, чем фенил; 2) как отмечалось выше, наблюдается заметное дативное взаимодействие НЭП при атоме железа с вакантными орбиталями теллура, приводящее к отклонению атома теллура из плоскости кольца к атому железа; 3) ферроценильный фрагмент легко подвергается обратимому одноэлектронному окислению с образованием устойчивого парамагнитного феррициний-катиона; 4) с ферриценильным заместителем в гетерометаллический кластер вводится дополнительный атом железа.

Реакцией замещения атомов хлора в dppePtCl₂ на TeFc (из FcTeNa) в THF получен новый хелатный платиновый комплекс (dppe)Pt(TeFc)₂ **26** (Схема 22), который был выделен в виде желтых призматических кристаллов. При взаимодействии **26** с Re(CO)₅Cl в кипящем толуоле были выделены желто-оранжевые кристаллы продукта хелатирования фрагмента (CO)₃ReCl комплексом **26**, а именно биядерного платина-рениевого комплекса с двумя теллуроферроценильными мостиками, dppePt(μ -TeFc)₂Re(CO)₃Cl **27**. (Схема 24)

Схема 24. Образование комплексов dppePt(TeFc)₂ (26) и dppePt(µ-TeFc)₂Re(CO)₃Cl (27)

Комплексы **26** и **27** хорошо растворимы в CH₂Cl₂, THF и нерастворимы в предельных углеводородах (гексан, гептан); охарактеризованы по данным элементного анализа и ИК-спектроскопии (комплекс **27** содержит полосы валентных колебаний СО групп: 2003 см⁻¹, 1898 см⁻¹, 1870 см⁻¹), которые аналогичны найденным в **25**.

По данным рентгеноструктурного анализа (Рис.25) в комплексе **26** ферроценильные группы от двух цис-TeFc лигандов отклоняются друг от друга так же, как фенильные группы в dppePt(PhTe)₂ [81] и цимантренильные группы в (PPh₃)₂Pt(SC₅H₄Mn(CO)₃)₂) [82]. Также в **26** наблюдается характерное отклонение атома Te от плоскости соответствующего циклопентадиенильного кольца к атому Fe (в среднем 7°), вероятно, вследствие дативного взаимодействия Fe \rightarrow Te, однако, данное отклонение не такое сильное, как в [FcTe-TeCl₂Fc] (20.3°) [67]. В основном, строение комплекса **27** (Рис.26) аналогично **25**.

В обоих комплексах платина находится в плоскоквадратном координационном окружении; межатомные расстояния Pt-Te в **26** (2,62 Å) и в **27** (2,65 Å) находятся в обычном диапазоне длин связей для подобных $[P]_2Pt(TeR)_2$ комплексов [81, 83], причем связи Pt-Te и Re-Te в **26** и **27** укорочены по сравнению с суммой соответствующих ковалентных радиусов ($R_{Te}+R_{Pt}=1.38+1.36=2.74$ Å), ($R_{Te}+R_{Re}=1.38+1.51=2.89$ Å) [65] (Таблицы 17 и 18).

Рис.25 Молекулярная структура комплекса dppePt(TeFc)₂ (**26**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Pt(1)Te(2)	2.6250(6)	2.74
Pt(1)Te(1)	2.6087(5)	2.74
Pt(1)P(2)	2.255(1)	2.43
Pt(1)P(1)	2.257(2)	2.43

Таблица 17. Основные длины связей для комплекса 26

Рис.26 Молекулярная структура комплекса dppePt(µ-TeFc)₂Re(CO)₃Cl (27) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
P(1)Pt(1)	2.266(2)	2.43
P(2)Pt(1)	2.263(2)	2.43
Pt(1)Te(3)	2.6389(7)	2.74
Pt(1)Te(4)	2.6578(5)	2.74
Te(3)Re(2)	2.7948(5)	2.89
Te(4)Re(2)	2.7899(6)	2.89

Таблица 18. Основные длины связей для комплекса 27

2.9. Синтез и молекулярные структуры ферроценилтеллур-содержащих комплексов железа

Мы показали, что при окислительном присоединении FcTe-TeI₂Fc к карбонилу железа в хлористом метилене образуется новый комплекс $(CO)_3$ FeI₂Te₂Fc₂ **28**, содержащий молекулу Fc₂Te₂, координированную через один атом теллура с железотрикарбонил дийодидным фрагментом (Схема 25). Комплекс **28** был выделен в виде красных кристаллов и образуется подобно его фенильному аналогу $(CO)_3$ FeI₂(Ph₂Te₂) [49].

Схема 25. Образование комплекса (CO)₃FeI₂Te₂Fc₂ (28)

Комплекс **28** хорошо растворим в CH_2Cl_2 , THF, плохо растворим в предельных углеводородах (гексан, гептан); охарактеризован по данным элементного анализа и ИКспектроскопии (содержит характеристические полосы валентных колебаний СО групп: 2079 см⁻¹, 2031 см⁻¹, 2026 см⁻¹).

Комплекс **28** является изоэлектронным аналогом (CO)₃FeI₂(Ph₂Te₂) [49] и для него характерны те же особенности геометрии. По данным рентгеноструктурного анализа (Puc.27) связь Fe-Te (2.580 Å) укорочена по сравнению с суммой соответствующих ковалентных радиусов ($R_{Fe}+R_{Te}=2.70$ Å) [65], а связь Te-Te удлинена по сравнению со свободной молекулой Fc₂Te₂ (2.7086) [84] (Таблица 19). Данное удлинение объясняется обратным донированием электронов с атома железа на разрыхляющую орбиталь связи Te-Te [85].

Рис.27 Молекулярная структура комплекса (CO)₃FeI₂Te₂Fc₂ (**28**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Te(2)Te(1)	2.770(1)	2.7086*
Te(1)Fe(1)	2.580(1)	2.70
Fe(1)I(1)	2.660(2)	2.77
Fe(1)I(2)	2.648(2)	2.77

Таблица 19. Основные длины связей для комплекса 28

* Расстояние Те...Те в свободной молекуле Fc₂Te₂

Для получения ферроценильного аналога CpFe(CO)₂TePh [13,77] димер [CpFe(CO)₂]₂ нагревали в толуоле (без кипячения) с Fc₂Te₂, в результате чего образовался новый циклопентадиенилдикарбонил-железо-теллуроферроценильный комплекс CpFe(CO)₂TeFc **29** (Схема 26), выделенный в виде коричневых кристаллов.

$$[CpFe(CO)_2]_2 + Te_2Fc_2 \xrightarrow{toluene} 2CpFe(CO)_2TeFc_2 \xrightarrow{100 \text{ °C}} 2CpFe(CO)_2TeFc_2$$

Схема 26. Образование комплекса CpFe(CO)₂TeFc (29)

Комплекс **29** хорошо растворим в CH_2Cl_2 , THF, C_6H_6 , толуоле, плохо растворим в предельных углеводородах (гексан, гептан); охарактеризован по данным элементного анализа и ИК-спектроскопии (содержит характеристические полосы валентных колебаний СО групп: 1997 см⁻¹, 1952 см⁻¹).

По данным рентгеноструктурного анализа (Рис.28) связь Fe-Te (2.589 Å) в **29** укорочена, как и в CpFe(CO)₂TePh [13,77], по сравнению с суммой соответствующих ковалентных радиусов (R_{Fe}+R_{Te}=2.70 Å) [65] (Таблица 20).

Рис.28. Молекулярная структура комплекса CpFe(CO)₂TeFc (**29**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Te(1)Fe(3)	2.589(3)	2.70
Te(1)C(2)	2.10(2)	2.11

Таблица 20. Основные длины связей для комплекса 29

Далее мы исследовали реакционную способность комплекса 29. Было установлено, что при взаимодействии CpFe(CO)₂TeFc с Br_2 или I_2 в CH₂Cl₂ происходит непосредственное галогенирование атома теллура в терминальном TeFc и образуются комплексы CpFe(CO)₂TeBr₂Fc 30 и CpFe(CO)₂TeI₂Fc 31 (Схема 27). Продукты были выделены в виде устойчивых на воздухе красных кристаллов 30 и темно-красных кристаллов 31.

Схема 27. Образование комплексов CpFe(CO)₂TeBr₂Fc (**30**) и CpFe(CO)₂TeI₂Fc (**31**)

Также было установлено, что комплекс **31** можно получить встречным синтезом при взаимодействии FcTe-TeI₂Fc с CpFe(CO)₂I в CH₂Cl₂. По-видимому, в растворе возникают мономеры FcTeI, которые внедряются по связи Fe-I. (Схема 25).

Комплексы **30** и **31** охарактеризованы по данным элементного анализа и ИКспектроскопии (содержат характеристические полосы валентных колебаний СО групп: для CpFe(CO)₂TeBr₂Fc 2044 см⁻¹, 1997 см⁻¹, для CpFe(CO)₂TeI₂Fc 2044 см⁻¹, 2007 см⁻¹).

По данным рентгеноструктурного анализа (Рис.29) связи Те-Fe в **30** (2.522 Å) и **31** (2.5328 Å) укорочены по сравнению с суммой ковалентных радиусов ($R_{Fe}+R_{Te}=2.70$ Å) [65]. Однако связи Те-X (2.712 – 2.768 Å для X=Br, 2.9855 - 2.9420 Å для X=I) заметно удлинены относительно суммы ковалентных радиусов ($R_{Fe}+R_{Br}=2.58$ Å) и ($R_{Fe}+R_{I}=2.77$ Å) [65] (Таблица 21). По-видимому, такое удлинение Те...Х можно объяснить дополнительным дативным взаимодействием переходный металл-халькоген с участием разрыхляющих орбиталей связи Те-X (X=Br, I). Стоит здесь также отметить характерное для теллура (IV) Т-образное лигандное окружение и линейную геометрию фрагмента X-

Te-X (X=Br, I) (угол XTeX около 170°), а также отсутствие характерных для органических теллурдигалогенидов специфических межмолекулярных взаимодействий Te---I и Te---Br. Точно такие же особенности геометрии наблюдаются и для их фенильных аналогов CpFe(CO)₂TeBr₂Ph и CpFe(CO)₂TeI₂Ph [58].

Рис.29 Молекулярные структуры комплексов CpFe(CO)₂TeBr₂Fc (**30**) и CpFe(CO)₂TeI₂Fc (**31**) показаны в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	X=Br (30) Å	СКР Å	X=I (31) Å	CKP Å
Fe(1)Te(1)	2.522(2)	2.7	2.5328(6)	2.7
X(1)Te(1)	2.768(2)	2.58	2.9420(4)	2.77
X(2)Te(1)	2.712(2)	2.58	2.9855(4)	2.77

Таблица 21. Основные длины связей для комплексов 30 и 31

По аналогии с синтезом комплекса 23 был получен его изоэлектронный аналог CpFe(CO)₂(µ-TeFc)Fe(CO)₃I₂ 32. (Схема 28)

Схема 28. Образование комплекса CpFe(CO)_2(μ -TeFc)Fe(CO)_3I_2 (32)

Комплекс 32 был выделен в виде коричневых кристаллов, охарактеризован по данным элементного анализа и ИК-спектроскопии (содержит характеристические полосы

валентных колебаний СО групп: 2072 см⁻¹, 2026 см⁻¹, 2008 см⁻¹, 1981 см⁻¹). По данным рентгеноструктурного анализа (Рис.30), строение и особенности геометрии **32** (укороченность связей Fe-Te) (Таблица 22) аналогичны найденным для **23** и вызываются теми же причинами.

Рис.30. Молекулярная структура комплекса CpFe(CO)₂(µ-TeFc)Fe(CO)₃I₂ (**32**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Fe(1)Te(1)	2.551(3)	2.70
Te(1)Fe(3)	2.623(4)	2.70
Fe(3)I(2)	2.652(3)	2.71
Fe(3)I(1)	2.679(5)	2.71

Таблица 22. Основные длины связей для комплекса 32

При УФ-облучении комплекса CpFe(CO)₂TeFc **29** в толуоле происходит декарбонилирование и с небольшим выходом образуется необычный трехъядерный железный кластер, в котором атомы железа соединяются ферроценилтеллуридными мостиками, Cp₃Fe₃(μ -TeFc)₃(μ -CO)CO **33** (Puc.31) (Схема 29). Основным же продуктом реакции, по-видимому, является не полностью охарактеризованный димерный комплекс [CpFe(CO)(μ -TeFc)]₂ с двумя теллуроферроценильными мостиками, который по данным TCX и ИК-спектроскопии (полосы валентных колебаний CO групп: 1941 см⁻¹, 1909 см⁻¹) ведет себя идентично известному фенильному аналогу [CpFe(CO)(μ -TePh)]₂ [86].

Схема 29. Образование комплексов Cp₃Fe₃(µ-TeFc)₃(µ-CO)CO (**33**) и [CpFe(CO)(µ-TeFc)]₂

Комплекс **33** был выделен в виде коричневых кристаллов. По данным ИКспектроскопии он содержит характеристические полосы валентных колебаний концевой и мостиковой СО-групп при 1930 см⁻¹ и 1696 см⁻¹, соответственно. По данным РСА, четыре из связей Fe-Te (Fe(5)-Te(1), Fe(4)-Te(1), Fe(4)-Te(3), Te(3)-Fe(7)) укорочены до 2.547 Å относительно суммы ковалентных радиусов ($R_{Fe}+R_{Te}=2.7$ Å) [65]. Однако, две остальные связи (Fe(5)-Te(2) и Fe(7)-Te(2)) для мостика, дополняющего связь Fe(5)-Fe(7) (2.600 Å), укорочены еще сильнее - до 2.468-2.478 Å. (Таблица 23).

Рис.31 Молекулярная структура комплекса Cp₃Fe₃(µ-TeFc)₃(µ-CO)CO (**33**) показана в тепловых эллипсоидах с 50% вероятностью. Атомы водорода не показаны.

Связь	Длина, Å	Сумма ковалентных радиусов Å
Te(1)Fe(4)	2.546(3)	2.70
Te(1)Fe(5)	2.547(3)	2.70

Таблица 23. Основные длины связей для комплекса 33

Fe(5)Fe(7)	2.600(4)	2.64
Fe(5)Te(2)	2.468(3)	2.70
Te(2)Fe(7)	2.478(3)	2.70
Fe(7)Te(3)	2.546(3)	2.70
Te(3)Fe(4)	2.545(3)	2.70
Fe(5)Fe(4)	4.332(4)	2.64
Fe(4)Fe(7)	4.354(4)	2.64

ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Реагенты, растворители и приборы.

Все операции, связанные с синтезом и выделением соединений, проводились в атмосфере аргона и в абсолютированных растворителях. Коммерческие, Ph₂Se₂, Cr(CO)₆, Fe(CO)₅, Ru₃(CO)₁₂, [CpFe(CO)₂]₂, COD, Te, Br₂, I₂, использовали без дополнительной очистки. Исходный дифенилдителлур был получен по методике [87] диферроценилдителлур был получен по методике [84]. Для химического анализа использовали CHNS-анализатор фирмы "Carlo Erba", для ИК-спектроскопии - фурье-спектометре «BrukerAlpha» в таблетках КВг и в растворах абсолютированных органических растворителях с компенсацией.

3.2. Рентгеноструктурное исследование.

РСА монокристаллов соединений проводили на четырехкружном автоматическом дифрактометре «Bruker Smart Apex II CCD» при комнатной температуре или при низких температурах (~100К). Монокристаллы наклеивали на стеклянную иглу с помощью быстросохнущей эпоксидной смолы на воздухе и переносили на дифрактометр. Структуры расшифрованы прямым методом, все неводородные атомы уточнены в полноматричном анизотропно-изотропном приближении. Расчеты выполнены с применением комплекса программ SHELXTL [88].

3.3. Синтез соединений.

1 $Cr(CO)_5(Ph_2Se_2)$

Раствор 0.22 г (1 ммоль) $Cr(CO)_6$ в 10 мл ТНГ облучали в кварцевом сосуде Шленка УФ — светом 1.5 часа. К полученному оранжевому раствору добавляли 0.3 г (1 ммоль) Ph₂Se₂. После перемешивания в течении 1 часа цвет реакционной смеси сменился на красный. Растворитель удаляли досуха в вакууме водоструйного насоса. Краснокоричневое масло промывали 3 раза по 5 мл гептаном, экстрагировали 10 мл хлористого метилена, фильтровали раствор через тефлоновую трубочку. Добавляли 5 мл гептана, раствор концентрировали до помутнения и выдерживали 5 дней при температуре -10 °C. Наносили на селикогель, упаривали досуха в вакууме и досушивали на масляном насосе. Получившийся порошок оранжевого цвета, экстрагировали гептаном, получали краснокоричневый раствор, упаривали примерно до 5 мл и выдерживали 3 дня при -10 °C. Из раствора выпадали желто-оранжевые кристаллы пригодные для PCA.

Выход (монокристаллов) **1** 64 % Элементный анализ для C₁₇H₁₀O₅CrSe₂ (Mr=504) Найдено (%): C 41.10 H 2.08 Вычислено (%): C 40.49 H 1.99 ИК-спектр (в растворе CH₂Cl₂, v, см⁻¹): 1935 оч.с, 2060 ср.

2 $Fe(CO)_3I_2(Ph_2Se_2)$

К раствору 0.16 г (0.51 ммоль) Ph_2Se_2 в 10 мл эфира желтого цвета добавляли 0.13 г (0.51 ммоль) I₂ маленькими порциями в течение 5 минут при перемешивании магнитной мешалкой. К получившемуся красному раствору добавляли избыток (0.2 мл, 1.5 ммоль) Fe(CO)₅ (реакция идет на свету). Образовавшуюся красно-коричневую реакционную смесь перемешивали 3 часа. Упаривали досуха в вакууме водоструйного насоса, остаток промывали 10 мл гексана, экстрагировали 10 мл хлористого метилена, красно-коричневый раствор фильтровали, добавляли 6 мл гептана, раствор концентрировали до половины объема и выдерживали 25 дней при температуре -10 °C. Из раствора выпадали красные палочковидные кристаллы комплекса **2**, а также незначительное количество тонких красных ромбовидных кристаллов комплекса **9** (см.ниже), пригодные для PCA.

Выход 2 34 %.

Элементный анализ для C₁₅H₁₀O₃FeSe₂I₂ (Mr=706) Найдено (%): C 24.28 H 1.50 Вычислено (%): C 25.52 H 1.42 ИК-спектр (в растворе CH₂Cl₂, v, см⁻¹): 2130 оч.сл.,2085 оч.с.,1985 ср.

3 FcTe-TeCl₂Fc; 4 FcTe-TeBr₂Fc; 5 FcTe-TeI₂Fc

К красно-оранжевому раствору 0.05 г (ммоль) Fc_2Te_2 в 5 мл CH_2Cl_2 добавляли эквивалентное количество галогенирующего агента (SO₂Cl₂, Br₂, I₂) в токе аргона и перемешивали 30 минут на магнитной мешалке. Добавляли 2 мл гексана и концентрировали на водоструйном насосе до начала кристаллизации (примерно до ¹/₂ исходного объема) и выдерживали 24 часа при -10 °C. Из раствора выпадали черные кристаллы, пригодные для PCA. Кристаллы отделяли декантацией и промывали 2x5 гексаном и высушивали в вакууме водоструйного насоса и досушивали на масляном насосе.

Выход (монокристаллов) **3** 76 % Элементный анализ для C₂₀H₁₈Fe₂Te₂Cl₂ (Mr=696) Найдено (%): C 33.55 H 2.42 Вычислено (%): C 34.51 H 2.61

Выход (монокристаллов) **4** 85 % Элементный анализ для C₂₀H₁₈Fe₂Te₂Br₂ (Mr=785) Найдено (%): C 29.16 H 1.99 Вычислено (%): C 30.60 H 2.31

Выход (монокристаллов) **5** 86 % Элементный анализ для C₂₀H₁₈Fe₂Te₂I₂ (Mr=879) Найдено (%): C 25.27 H 0.99 Вычислено (%): C 27.33 H 2.06

6 FcTeMeI₂

К вишневому раствору FcTeI в 4 мл THF (полученному из 0.025 г (0.04 ммоль) Fc₂Te₂ и 0.01 г(0.04 ммоль) I₂ в THF), добавляли 0.06 мл MeI (0.96 ммоль) в токе аргона и перемешивали на магнитной мешалке 4 часа. Красно-малиновую реакционную смесь

упаривали в вакууме водоструйного насоса, промывали 2x3 мл гептаном, экстрагировали 4 мл CH₂Cl₂, добавляли 1.5 мл гептана и концентрировали в вакууме водоструйного насоса до начала кристаллизации (примерно ½ исходного объема). Выдерживали при -10 С° 2 недели, из раствора выпадали красные кристаллы, пригодные для PCA. Кристаллы отделяли декантацией и промывали 2x5 мл гептана.

Выход **6** 63 % (0.014г) С₁₁H₁₂FeTeI₂ (Mr=581.5) Вычислено (%): С 22.72 H 2.08

7 $[FcSe_3]^+[FeBr_4]^-$

К красному раствору 0.05 г (0.118 ммоль) FcSe₃ в 7 мл CH₂Cl₂ в токе аргона и при перемешивании на магнитной мешалке добавляли 0.006 мл (0.118 ммоль) Br₂, наблюдали выпадение небольшого количества красного осадка. Добавляли еще 0.006 мл (0.118 ммоль) Br₂, красный осадок растворился, а через 5 минут на стенках колбы начали образовываться красные кристаллы, пригодные для PCA. Кристаллы отделяли декантацией и промывали 5 мл гептана, высушивали в вакууме водоструйного насоса и досушивали на масляном насосе.

Выход 7 56 % (0.05г)

8 $[(CO)_3Fe(I)TePh]_2$

К раствору 0.1 г (0.244 ммоль) Ph_2Te_2 в 15 мл CH_2Cl_2 красно-оранжевого цвета добавляли 0.062 г (0.244 ммоль) I_2 маленькими порциями в течение 5 минут в токе Ar и перемешивали на магнитной мешалке 50 минут. К получившейся черно-зеленой суспензии добавляли 0.1 мл (0.732 ммоль) Fe(CO)₅. Образовавшуюся красную реакционную смесь перемешивали 1 часа, упаривали досуха в вакууме водоструйного насоса. Маслянистый красно-коричневый остаток промывали 3 раза по 10 мл гексаном, экстрагировали 15 мл хлористого метилена, красно-коричневый раствор фильтровали через стеклянный фильтр. Добавляли 6 мл гептана, раствор концентрировали до половины объема и выдерживали 5 дней при температуре -10 °C. Из раствора выпадали оранжевые кристаллы, пригодные для PCA.

Выход **8** 53 % Элементный анализ для C₁₈O₆H₁₀Fe₂Te₂I₂ (Mr=943) Найдено (%): C 23.56 H 1.12 Вычислено (%): С 22.93 Н 1.07

ИК спектр (в растворе THF, v, см⁻¹): 2060 с, 2020 ср.

9 $[(CO)_{3}Fe(\mu-SePh)_{3}Fe(CO)_{3}]^{+}(I_{5})^{-}$

В реакции получения комплекса 2 образовалось небольшое количество тонких красных ромбовидных кристаллов комплекса 9, охарактеризованных только методом PCA.

10 $[((CO)_3RuBr_2)_2(\mu$ -SePh)₂Ru(CO)₄]

К раствору 0.639 г (1 ммоль) Ru₃(CO)₁₂ в 20 мл бензола желтого цвета добавляли 0.8 г (2 ммоль) PhSeBr₃. Получившеюся коричневую реакционную смесь перемешивали магнитной мешалкой 40 минут при комнатной температуре до образования оранжевой окраски. Растворитель упаривали досуха в вакууме водоструйного насоса, остаток экстрагировали 15 мл хлористого метилена, добавляли 7 мл гептана, получившуюся оранжевую смесь концентрировали до половины изначального объема и выдерживали 24 часа при температуре -10 °C. Выпадали желтые кристаллы **10**, пригодные для PCA.

Выход **10** 47 %. Элементный анализ для Ru₃Se₂Br₄O₁₀C₂₂H₁₀ (Mr=1215) Найдено (%): C 22.38 H 0.87 Вычислено (%): C 21.74 H 0.83 ИК спектр (в таблетках KBr, v, см⁻¹): 2120 с, 2060 с, 2000 сл.

11 [Re(CO)₃(μ -I)]₂(μ -Ph₂Se₂)

К раствору 0.15 г (0.5 ммоль) Ph_2Se_2 в 18 мл ТНF желтого цвета добавляли 0.13 г (0.5 ммоль) I_2 маленькими порциями в течение 5 минут при перемешивании магнитной мешалкой. К получившемуся красно-малиновому раствору добавляли 0.1 г (0.27 ммоль) Re(CO)₅Cl после чего реакционную смесь кипятили 1.5 часа с обратным холодильником до образования коричневой окраски, упаривали в вакууме водоструйного насоса, черно-красное масло промывали 3 раза по 5 мл гексаном, экстрагировали 10 мл хлористого метилена, красно-коричневый раствор фильтровали и добавляли 5 мл гексана. Затем раствор концентрировали до помутнения и выдерживали 24 часа при температуре -10 °C. Из раствора выпадали красные кристаллы **11**, пригодные для PCA.

Выход **11** (монокристаллов) 6 %. Элементный анализ для C₁₈H₁₀O₆Re₂Se₂I₂ (Mr=1106) Найдено (%): С 20.61 Н 1.95 Вычислено (%): С 19.54 Н 0.91 ИК спектр (в растворе CH₂Cl₂, v, см⁻¹): 1920 оч.с, 1945 оч.с,2025 с, 2045 ср.

12 CymenRuI(µ-I)(PhTeI)

Смесь 0.1 г (0.163 ммоль) [СутепRuCl₂]₂ и 0.23 г (0.653 ммоль) КІ в 10 мл ацетона перемешивали на магнитной мешалке 1 час. Вишневую реакционную смесь упаривали в вакууме водоструйного насоса, экстрагировали 20 мл CH₂Cl₂, фильтровали и упаривали. Темно-красный остаток растворяли в 10 мл THF. К вишневому раствору добавляли PhTeI (полученный из 0.068 г (0.163 ммоль) Ph₂Te₂ и 0.041 г (0.163 ммоль) I₂ в мл THF) и перемешивали 1 час на магнитной мешалке, цвет сменился с вишневого на красно-коричневый. Реакционную смесь упаривала досуха в вакууме водоструйного насоса, получившийся красно-коричневый остаток промывал 5 мл гептана, экстрагировали 10 мл CH₂Cl₂, фильтровали в тоге аргона. К фильтрату добавляли 3 мл гексана и концентрировали в вакууме водоструйного насоса до начала кристаллизации (примерно до 1/3 исходного объема) и выдерживали 24 часа при температуре-10°С. Из раствора выпадали темно-красные кристаллы, пригодные для PCA. Кристаллы отделяли декантацией, помывали 2x5 мл гептаном, высушивали в вакууме водоструйного насоса и досушивали на масляном насосе.

Выход **12** 45% (0.12 г) Элементный анализ для C₁₆H₁₉RuTeI₃ (Mr=821) Найдено (%): С Н Вычислено (%): С 23.4 H 2.33

13 (C₈H₁₂)(OMe)TeBr₃

К суспензии 1.27 г Те (0.01 моль) в 10 мл ССІ₄ добавляли Вг₂ (1 мл, 0.02 моль) и перемешивали магнитной мешалкой 2.5 часа. К получившейся желтой суспензии добавляли раствор циклооктадиена (СОD) (1.2 мл, 0.01 моль) в 15 мл СН₃ОН, и перемешивали еще 1 час. При этом происходило изменение окраски с желтого на темно желтый и заметное разогревание реакционной смеси. Добавляли в реакционную смесь 2 г измельченного активированного угля, и перемешивали магнитной мешалкой 1 час. Смесь

упаривали в вакууме, твердый остаток экстрагировали 15 мл бензола, горячий раствор фильтровали, добавляли 10 мл гептана, концентрировали до ¹/₂ исходного объема и выдерживали 24 часа при температуре -10 °C. При этом наблюдали выпадение желтых призматических кристаллов, пригодных для PCA.

Выход **13** 48 %. Элементный анализ для C₉H₁₅OTeBr₃ (Mr=506.5) Найдено (%): C 21.76 H 3.27 Вычислено (%): C 21.34 H 2.98

14 (C₈H₁₂)(OEt)TeBr₃

К суспензии 1.27 г Те (0.01 моль) в 10 мл ССІ₄ добавляли Вг₂ (1 мл, 0.02 моль) и перемешивали магнитной мешалкой 2.5 ч. К получившейся желтой суспензии добавляли раствор СОD (1.2 мл, 0.01 моль) в 15 мл С₂H₅OH, перемешивали еще 1 ч. При этом происходило потемнение желтой окраски и заметное разогревание реакционной смеси. Добавляли в реакционную смесь 2 г измельченного активированного угля и перемешивали магнитной мешалкой 1 ч., упаривали досуха в вакууме. Твердый остаток экстрагировали 15 мл бензола, фильтровали через стеклянный фильтр на горячей бане, добавляли 10 мл гептана, концентрировали до ½ исходного объема и выдерживали 24 часа при температуре -10 °C. При этом наблюдали выпадение желтых призматических кристаллов, пригодных для РСА.

Выход **14** 41 % Элементный анализ для C₁₀H₁₇OTeBr₃ (Mr=520.5) Найдено (%): C 23.51 H 3.32 Вычислено (%): C 23.07 H 3.29

15 (C₈H₁₂)(OMe)TeI₃

К смеси 0.815 г (C₈H₁₂)(OMe)TeBr₃ (1.6 ммоль) и 0.9 г порошка KI (5 ммоль) добавляли 15 мл ацетона и перемешивали магнитной мешалкой 4 ч. При этом произошло изменение цвета реакционной смеси с желтого на красный. Упаривали растворитель досуха в вакууме водоструйного насоса, твердый красный остаток дважды экстрагировали 12 мл хлористого метилена и фильтровали через стеклянный фильтр на горячей бане. К объединенным экстрактам добавляли 5 мл гептана и выдерживали 3 часа при температуре – 10 °C. Из раствора выпадали красные кристаллы, пригодные для PCA.
Выход **15** 20%. Элементный анализ для C₉H₁₅OTeI₃ (Mr=647.5) Найдено (%): C 16.72 H 2.30 Вычислено (%): C 16.69 H 2.33

16 (C₈H₁₂)(OEt)TeI₃

По аналогичной процедуре из 0.815 г (C₈H₁₂)(OMe)TeBr₃ (1.6 ммоль) и 0.9 г порошка КІ (5 ммоль) получили оранжевые призматические кристаллы, пригодные для РСА.

Выход **16** 25%. Элементный анализ для C₁₀H₁₇OTeI₃ (Mr=661.5) Найдено (%): C 18.69 H 2.64 Вычислено (%): C 18.15 H 2.59

$17 (C_8H_{12})Br_2Se$

К суспензии 0.8 г (10 ммоль) Se в 10 мл CH₂Cl₂ добавляли 0.5 мл (10 ммоль) Br₂ в токе аргона и перемешивали 1.5 часа на магнитной мешалке. Красную реакционную смесь (с оранжевым осадком) упаривали в вакууме водоструйного насоса. К оранжевому остатку добавляли раствор COD 1.2 мл (20 ммоль) в 10 мл метанола и перемешивали 1 час до растворения оранжевого осадка, при этом было замечано значительное разогревание смеси. Реакционную смесь коричневого цвета упаривали досуха в вакууме, бежевый остаток промывали 2x5 мл гептаном, экстрагировали 10 мл CH₂Cl₂, фильтровали на горячей бане в токе аргона, добавляли к фильтрату 4 мл гексана, концентрировали до $\frac{1}{2}$ исходного объема и выдерживали 24 часа при температуре – 10 °C. Из раствора выпадали белые призматические кристаллы, пригодные для PCA. Кристаллы отделяли декантацией, промывали 2x5 мл гептаном и высушивали в вакууме.

Выход **17** 43% (1.5 г) Элементный анализ для C₈H₁₂Br₂Se (Mr=347) Найдено (%): C 27.51 H 3.26 Вычислено (%): C 27.69 H 3.48

18 (C₈H₁₂)Br₂SeBr₂

К желтому раствору 0.2 г (0.576 ммоль) (C_8H_{12}) Br_2Se в 7 мл CH_2Cl_2 в токе аргона

добавляли 0.045 мл Br₂ (0.872 ммоль) и перемешивали 30 минут на магнитной мешалке. Красную реакционную смесь упаривали в вакууме, оранжевый маслянистый остаток промывали 2x5 мл гептаном, экстрагировали 15 мл CH₂Cl₂. Оранжевый раствор фильтровали в токе аргона, добавляли 3 мл гептана, концентрировали в вакууме примерно до ¹/₂ исходного объема и выдерживали 1 неделю при температуре – 10 °C. Из раствора выпадали светло-желтые кристаллы, пригодные для PCA.

Выход 18 56% (0.16 г)

19 CpFe(CO)₂(TeBr₂Ph)

К раствору 0.165 г (0.37 ммоль) PhTeBr₃ в 15 мл THF желтого цвета добавляли 0.131 г (0.37 ммоль) [CpFe(CO)₂]₂ в токе аргона и при перемешивании магнитной мешалкой. Получившуюся коричнево-красную реакционную сместь перемешивали еще полчаса, после чего реакционную смесь кипятили 40 минут на масляной бане с обратным холодильником. При остывании смеси наблюдали выпадение черного осадка. Упаривали смесь в вакууме, черно-красный маслянистый остаток промывали 5 мл гексана, экстрагировали 15 мл хлористого метилена, красно-оранжевый раствор фильтровали через стеклянный фильтр. Затем добавляли 5 мл гексана, раствор концентрировали до помутнения и выдерживали 24 ч. при температуре -10° C. Из раствора выпадали оранжевые кристаллы, пригодные для PCA.

Выход **19** 62 %. Элементный анализ для FeTeBr₂O₂C₁₃H₁₀ (Mr=542) Найдено (%): C 28.47 H 1.81 Вычислено (%): C 28.83 H 1.86 ИК спектр (в растворе CH₂Cl₂, v, см⁻¹): 2045 оч.с., 2000 оч.с.

20 CpFe(CO)₂(TeBr₂(OMe)(C₈H₁₂))

К раствору 0.20 г (0.56 ммоль) [CpFe(CO)₂]₂ в 15 мл ТНF красного цвета добавляли 0.29 г (0.56 ммоль) (C₈H₁₂)(OMe)TeBr₃ в токе аргона и при перемешивании магнитной мешалкой. Получившуюся красную реакционую смесь кипятили 1 ч. на масляной бане с обратным холодильником. Смесь упаривали в вакууме , красно-коричневый маслянистый остаток промывали 2 раза по 5 мл гептана, экстрагировали 10 мл хлористого метилена, добавляли 5 мл гептана, выпадал мелкий желкий осадок. Желто-оранжевые кристаллы, пригодные для PCA, выращены в ампуле на границе бензол – циклогексан.

Выход **20** 57 %. Элементный анализ для FeTeBr₂O₃C₁₆H₂₀ (Mr=604) Найдено (%): C 31.04 H 3.12 Вычислено (%): C 31.83 H 3.33 ИК спектр (в растворе CH₂Cl₂, v, см⁻¹): 2045 с., 1995 с.

21 CpFe(CO)₂(TeI₂(OMe)(C₈H₁₂))

К смеси 0.34 г CpFe(CO)₂(TeBr₂(OMe)(C₈H₁₂)) (0.56 ммоль) и 0.28 г порошка KI (1.68 ммоль) добавляли 15 мл ацетона и перемешивали магнитной мешалкой 4 часа, при этом произошло изменение желто-коричневой окраски на красную. Раствор упаривали в вакууме, твердый красный остаток дважды экстрагировали на горячей водяной бане 10 мл хлористого метилена и фильтровали через стеклянный фильтр. К объединенным экстрактам добавляли 5 мл гептана, концентрировали на водоструйном насосе до помутнения раствора и выдерживали 7 дней при температуре – 10°C. Из раствора выпадали красные призматические кристаллы, пригодные для PCA.

Выход **21** 32 %. Элементный анализ для FeTeI₂O₃C₁₆H₂₀ (Mr=698) Найдено (%): C 26.61 H 2.15 Вычислено (%): C 27.54 H 2.89 ИК спектр (в растворе CH₂Cl₂, v, см⁻¹): 2045 с., 1995 с.

22 (C₈H₁₂)(OEt)TeBr₂CHCBrFc

К оранжевому раствору 0.042 г (0.2 ммоль) FcC=CH в 10 мл бензола в токе аргона добавляли 0.1 г (0.2 ммоль) (C₈H₁₂)(OEt)TeBr₃ и перемешивали 30 минут на магнитной мешалке. Цвет раствора не менялся, но при нанесении на пластинку для TCX (Silufol) цвет менялся на ярко красный. Добаляли 3 г силикагеля к реакционной смеси и перемешивали 1 ч на магнитной мешалке. Получившуюся реакционную смесь красного цвета упаривали в вакууме и экстрагировали 20 мл CH₂Cl₂. Добавляли 10 мл гептана, концентрировали в вакууме водоструйного насоса до $\frac{1}{2}$ исходного объема и выдерживали 12 часов при -10°C. Из раствора выпадали красные призматические кристаллы, пригодные для PCA. Кристаллы отделяли декантацией, помывали 2x5 мл гептаном, высушивали в вакууме.

Выход 22 75% (0.11 г)

Элементный анализ для C₂₂H₂₇Br₃FeOTe (Mr=730.62)

Найдено (%): С 36.04 Н 3.701 Вычислено (%): С 36.17 Н 3.72

23 $CpFe(CO)_2(\mu$ -TePh)Fe(CO)_3I_2

К красному раствору 0.106 г (0.251 ммоль) $Fe(CO)_4I_2$ в 10 мл CH_2CI_2 в токе аргона добавляли 0.093 г (0.243 ммоль) CpFe(CO)_2TePh при перемешивании магнитной мешалкой. Наблюдали выделение газа и изменение цвета реакционной смеси с красного на желто-коричневый. Раствор отфильтровывали, к фильтрату добавляли 2.5 мл гептана и концентрировали в вакууме до начала кристаллизации (примерно до 1/2 объема) и выдерживали 24 часа при температуре -10°C. Выпадали коричневые кристаллы, пригодные для PCA. Маточный раствор декантировали, коричнево-красные кристаллы промывали 2x5 мл гептаном и высушивали в вакууме.

Выход 23 85 %.

Элементный анализ для $Fe_2TeI_2C_{16}O_5H_{10}$ (Mr = 777) Найдено (%): C 24.89 H 2.44 Вычислено (%): C 24.79 H 2.30 ИК-спектр (в растворе CH_2Cl_2 , v, см⁻¹): 2080 с., 2037 с., 2014 сл., 1987 сл. TCX (CH_2Cl_2) –коричневое пятно, $R_f = 0.8$

24 [CpFe(CO)₂(µ-TePh)]₂Re(CO)₃Cl

Прозрачный, бесцветный раствор 0.10 г (0.28 ммоль) Re(CO)₅Cl в 10 мл THF кипятили 2,5 часа на масляной бане с обратным холодильником и при перемешивании на магнитной мешалке до пожелтения. ИК-спектр реакционной смеси (THF; v, см⁻¹: 2030 ср., 1913 с., 1893 ср.) подтвердил наличие в растворе только Re(CO)₃(THF)₂Cl. К нему добавляли раствор 0.212 г (0.56 ммоль) CpFe(CO)₂TePh в 5 мл THF темно-зеленого цвета и перемешивали на магнитной мешалке 15 минут. Полученный коричневый раствор фильтровали в токе Ar, концентрировали в вакууме до ½ исходного объема и добавляли 2 мл гептана. Выдерживали 1 день при температуре -10⁰C. Из раствора выпали прямоугольные коричневые кристаллы, пригодные для PCA.

Выход **24** 85% (0.29 г). Элементный анализ для C₂₉H₂₀Fe₂ClO₇ReTe₂ (Mr = 1069) Найдено (%): C 33.12 H 1.80 Вычислено (%): C 32.58 H 1.88 ИК-спектр (КВг; v, см⁻¹): 2021 с., 1998 с., 1970 с., 1889 с. ТСХ (толуол) - коричневое пятно, R_f=0,4

25 dppePt(µ-TePh)₂Re(CO)₃Cl

Первый способ.

К прозрачному оранжевому раствору 0.04 г. (0.04 ммоль) dppePt(TePh)₂ в 5 мл толуола добавляли коричнево-желтый раствор 0.04 г. (0.04 ммоль) [CpFe(CO)₂]₂(μ -TePh)₂Re(CO)₃Cl в 5 мл толуола в токе аргона и перемешивали на магнитной мешалке 15 минут. Получившуюся реакционную смесь оранжево-коричневого цвета нагревали на масляной бане с обратным холодильником 30 минут при 100°C до изменения цвета раствора на желтый и выпадения коричневого осадка. Раствор отфильтровали на горячей бане и при медленном охлаждении в масляной бане до комнатной температуры выпали призматические желтые кристаллы.

Выход **25** 73 % (0.038 г). Элементный анализ для C₄₁H₃₄ClO₃P₂Te₂PtRe (Mr = 1309) Найдено (%): C 38.39 H 2.68 Вычислено (%): C 37.63 H 2.62 ИК-спектр (KBr; vCO, см⁻¹): 2003, 1898, 1879.

Второй способ.

К 0.013 г (0.036 ммоль) Re(CO)₅Cl добавляли 5 мл толуола и перемешивали при 50°C 10 мин до почти полного растворения белого осадка. Добавляли 0.036 г (0.036 ммоль) (PPh₂CH₂CH₂PPh₂)Pt(TePh)₂ и кипятили реакционную смесь в течение еще 10 мин, получив желто-коричневый раствор без осадка. После остывания раствора до комнатной температуры выпадали капельки желтого масла, которые затвердевали при растирании. Смесь снова нагревали до кипения и медленно охлаждали до комнатной температуры. Выпавшие желтые кристаллы **25** промывали 2 мл гептана и высушивали.

Выход 79% (0.037 г). ИК-спектр (КВг, v, см⁻¹): 2003 оч.с, 1898 оч.с, 1879 оч.с

26 dppePt(TeFc)₂

К прозрачному красному раствору 0.20 г (0.32 ммоль) Fc₂Te₂ в 10 мл THF добавляли 0.30 г (13.04 ммоль, 20-кратный избыток) суспензии Na в 10 мл THF и 0.0196 г (0.1076 ммоль) бензофенона, перемешивали на магнитной мешалке 2.5 часа до изменения цвета реакционной смеси на зелено-желтый. Раствор фильтровали в токе Ar к 0.21 г (0.32 ммоль) dppePtCl₂ и перемешивали на магнитной мешалке 3 часа. Оранжево-красную реакционную смесь упарили в вакууме водоструйного насоса, образовался маслянистый осадок желтооранжевого цвета, который при растирании в 10 мл гептана затвердел. Осадок отделяли, экстрагировали 10 мл THF, к желтому раствору добавляли 5 мл гептана, концентрировали в вакууме водоструйного насоса до 1/3 исходного объема и выдерживали 24 часа при температуре -15°C. Из раствора выпадал осадок в виде порошка желтого цвета, который отделяли, промывали 2x5 мл гептана и высушивали в вакууме. Кристаллы, пригодные для PCA, были выращены в ампуле на границе дейтерохлороформ/гексан при медленном испарении.

Выход **26** 70% (0.27 г). Элементный анализ для PtTeFe₂P₂C₄₆H₄₀ (Mr 1216.74) Найдено (% вес.): C 44.51 H 3.76 Вычислено (% вес.): C 45.40 H 3.31

27 dppe(μ-TeFc)₂Re(CO)₃Cl

К 0.04 г (0.115 ммоль) Re(CO)5Cl добавляли 7 мл толуола и перемешивали на магнитной мешалке без тока Ar и с обратным холодильником при температуре 60°С в течении 50 мин до почти полного растворения белого осадка. К получившемуся прозрачному раствору с небольшим количеством белого осадка добавляли 0.14 г (0.115 ммоль) dppePt(TeFc)₂ и кипятили реакционную смесь на масляной бане в течение еще 50 мин, получив оранжево-желтый раствор без осадка. После остывания раствора до выпадали комнатной температуры капельки оранжево-желтого масла, которые затвердевали при растирании с 2 мл гептана. Реакционную смесь с затвердевшим осадком снова нагревали до температуры 130°С и после полного растворения осадка медленно охлаждали в масляной бане до комнатной температуры. При охлаждении из раствора выпадали оранжевые призматические кристаллы, пригодные для РСА, которые отделяли, промывали 2x5 мл гептана и высушивали в вакууме.

Выход **27** 82% (0.143 г). Элементный анализ для C₄₉H₄₀ClO₃P₂Te₂PtReFe (Mr 1522.43) Найдено (% вес.): C 38.68 H 3.54 Вычислено (% вес.): C 38. 61 H 2.78 ИК-спектр (KBr, v, см⁻¹): 2003, 1898, 1870

$28 (CO)_3 FeI_2 Te_2 Fc_2$

К оранжево-красному раствору 0.05 г (0.08 ммоль) Fc_2Te_2 в 8 мл CH₂Cl₂ добавляли в токе аргона малиновый раствор 0.02 г (0.08 ммоль) I₂ в 3 мл CH₂Cl₂ и перемешивали реакционную смесь на магнитной мешалке 25 минут при 0°C градусов. К малиново-красной реакционной смеси добавляли 0.01 мл (0.08 ммоль) $Fe(CO)_5$ и перемешивали 3.5 часа при 0°C градусов до изменения цвета на красный и исчезновения в области валентных колебаний CO пиков при 2020 и 2000 см⁻¹ от исходного $Fe(CO)_5$. Добавляли 2.5 мл гептана и концентрировали в вакууме водоструйном насосе при 0°C до начала кристаллизации (примерно 1/2 объема), затем раствор фильтровали в токе аргона и выдерживали 24 часа при температуре -5°C. Из раствора выпадали черные призматические кристаллы, пригодные для PCA. Их отделяли, промывали 2х5 мл гептана и высушивали в вакууме.

Выход **28** 47.5 % (0.038г) Элементный анализ для Fe₃Te₂I₂H₁₈O₃C₂₃ (Mr =1019) Найдено (%): C 26.28 H 1.94 Вычислено (%): C 27.11 H 1.78 ИК-спектр (KBr; v, см⁻¹): 2079, 2031, 2026

29 CpFe(CO)₂TeFc

К 0.25 г (0.7 ммоль) [CpFe(CO)₂] и 0.44 г (0.7 ммоль) Fc₂Te₂ добавляли 30 мл толуола в токе аргона и при перемешивании магнитной мешалкой. Получившуюся реакционную смесь красно-коричневого цвета нагревали до 100°C в течение 1 часа на масляной бане с обратным холодильником до образования коричнево-желтой окраски. Протекание реакции контролировали с помощью ИК-спектроскопии и TCX в толуоле (ИК-спектр и TCX снимались каждые 15 минут). Раствор коричнево-желтого цвета фильтровали в токе аргона, фильтрат концентрировали в вакууме до 1/3 исходного объема и выдерживали 24 часа при температуре -10°С. Из раствора выпадали коричневые кристаллы, пригодные для РСА. Их отделяли, промывали 2х5 мл гептана, высушивали в вакууме.

Выход **29** 87 % (0.6 г) Элементный анализ для Fe₂TeC₁₇O₂H₁₄ (Mr = 489) Найдено (%): C 42.50 H 3.05 Вычислено (%): C 41.70 H 2.88 ИК-спектр (KBr; v, см⁻¹): 1997, 1952 ТСХ (толуол)- коричневое пятно R_f = 0,45

30 CpFe(CO)₂TeFcBr₂

К коричневому раствору 0.05 г (0.1 ммоль) CpFe(CO)₂TeFc в 8 мл CH₂Cl₂ добавляли 0.053 мл Br₂ в токе аргона и при перемешивании магнитной мешалкой. Получившуюся реакционную смесь красного цвета фильтровали в токе аргона, к фильтрату добавляли 2 мл гексана и концентрировали в вакууме до начала кристаллизации (примерно до 1/2 исходного объема) и выдерживали 24 часа при температуре -10°C. Из раствора выпадали кристаллы красного цвета, пригодные для PCA. Их отделяли декантацией, промывали 2x5 мл гептана и высушивали в вакууме.

Выход **30** 82 % (0.054 г). Элементный анализ для Fe₂TeBr₂C₁₇O₂H₁₄ (Mr = 649) Найдено (%): C 31.47 H 2.73 Вычислено (%): C 31.44 H 2.17 ИК-спектр (KBr; vCO, см⁻¹): 2044, 1997.

31 CpFe(CO)₂TeFcI₂

К коричневому раствору 0.05 г (0.1 ммоль) CpFe(CO)₂TeFc в 6 мл CH₂Cl₂ добавляли фиолетовый раствор 0.025 г (0.1 ммоль) I₂ в 2 мл CH₂Cl₂ в токе аргона и при перемешивании магнитной мешалкой. Получившуюся реакционную смесь краснокоричневого цвета фильтровали в токе аргона, к фильтрату добавляли 1.5 мл гексана и концентрировали в вакууме до начала кристаллизации (примерно до 1/2 исходного объема) и выдерживали 24 часа при температуре -10°C. Из раствора выпадали кристаллы темно-красного цвета, пригодные для РСА.

Выход **31** 91 % (0.069 г) Элементный анализ для Fe₂TeI₂C₁₇O₂H₁₄ (Mr = 743) Найдено (%): C 27.68 H 1.42 Вычислено (%): C 27.46 H 1.89 ИК-спектр (CH₂Cl₂; v, см⁻¹): 2044, 2007

32 CpFe(CO)₂(µ-TeFc)Fe(CO)₃I₂

К коричневому раствору 0.10 г (0.2 ммоль) CpFe(CO)₂TeFc в 10 мл CH₂Cl₂ в токе аргона добавляли красный раствор 0.09 г (0.2 ммоль) Fe(CO)₄I₂ в 5 CH₂Cl₂ мл при перемешивании магнитной мешалкой, причем наблюдали выделение газа. Реакционную смесь коричневого цвета фильтровали в токе аргона, к фильтрату добавляли 2.5 мл гептана и концентрировали в вакууме до начала кристаллизации (примерно до 1/2 объема) и выдерживали 24 часа при температуре -10°C. Из раствора выпадали кристаллы коричневого цвета, пригодные для PCA. Их отделяли, промывали 2х5 мл гептана и высушивали в вакууме.

Выход **32** 83 % (0.15 г). Элементный анализ для Fe₃TeI₂C₂₀O₅H₁₄ (Mr = 883) Найдено (%): C 27.57 H 1.78 Вычислено (%): C 27.20 H 1.60 ИК-спектр (в KBr, v, см⁻¹): 2072, 2026, 2008, 1981

33 Cp₃Fe₃(µ-TeFc)₃(µ-CO)CO

Коричневый раствор 0.1 г (0.20 ммоль) CpFe(CO)₂TeFc в 20 мл толуола облучали УФ-светом (водяное охлаждение и слабый ток аргона) в течение 1 ч до исчезновения пиков CO-групп в ИК-спектре исходного CpFe(CO)₂TeFc. Коричневую реакционную смесь фильтровали в токе аргона, фильтрат концентрировали в вакууме примерно до 1/3 исходного объема, добавляли 3 мл гептана и выдерживали 3 недели при -15°C. Из раствора выпадал коричневый осадок (его ИК-спектр указывал на образование димера [CpFe(CO)TeFc]₂) и небольшое количество коричневых игольчатых кристаллов, пригодных для PCA. Кристаллы отделяли декантацией и промывали 2 мл гептана.

Выход **33** 6% (0.016 г).

ИК-спектр (КВг, vCO, см⁻¹): 1930, 1696.

выводы

1. Разработаны новые подходы к синтезу гетерометаллических органохалькогалогенидов

2. Синтезировано и выделено в виде монокристаллов 32 новых комплекса переходных металлов (Cr, Fe, Re, Ru, Pt), структурно охарактеризованных методом PCA.

3. Показано, что координация дифенилдихалькогенидов E_2Ph_2 в комплексах (Cr(CO)₅ E_2Ph_2 и Fe(CO)₃ $I_2E_2Ph_2$ происходит по одному атому халькогена, причем связь халькоген-халькоген (E=Se,Te) сохраняется, но удлиняется по сравнению со свободной молекулой дифенилдихалькогена, а связь халькоген-переходный металл сильно укорачивается по сравнению с суммой ковалентных радиусов.

4. Установлено, что органохалькогалогениды REX способны быть лигандами для ряда комплексов переходных металлов (Fe, Re, Ru). При этом всегда наблюдается укороченность связей M-E (E = Se или Te), что определяется дополнительным вкладом дативного взаимодействия $M \rightarrow E$, одновременно приводя к ослаблению связей E-X в окружении халькогена.

5. Найдено, что стабилизирующее влияние дополнительного (3с-4е) связывания Те--галоген обеспечивает возможность координации PhTeX (X=Br, I) лиганда, в то время как в случае селена из-за легкого ухода атомов галогенов во внешнюю сферу наблюдается образование комплексов с PhSe или Ph₂Se₂ в качестве лигандов.

6. Установлено, что комплекс (CO)₃FeI₂Te₂Ph₂ при действии избытка Fe(CO)₅ подвергается электронокомпенсирующему превращению с разрывом связи Te-Te и образованием димерного железного комплекса, который одновременно содержит мостиковые атомы халькогена и концевые галогенидные лиганды, что нехарактерно для карбонильных комплексов переходных металлов вообще и впервые наблюдается для комплексов железа.

7. Установлено, что комплексы CpFe(CO)₂TeR (R=Ph, Fc) могут выступать в качестве лигандов для карбонильных комплексов других металлов, а также способны димеризоваться или тримеризоваться при декарбонилировании.

82

Приложения

Список комплексов

- 1 $Cr(CO)_5(Ph_2Se_2)$
- $2 \qquad Fe(CO)_3I_2(Ph_2Se_2)$
- **3** FcTe-TeCl₂Fc
- 4 FcTe-TeBr₂Fc
- 5 $FcTe-TeI_2Fc$
- 6 FcTeMeI₂
- 7 $[FcSe_3]^+[FeBr_4]^-$
- 8 $[(CO)_3Fe(I)TePh]_2$
- 9 $[(CO)_3Fe(\mu-SePh)_3Fe(CO)_3]^+(I_5)^-$
- $10 \qquad [((CO)_3 RuBr_2)_2(\mu SePh)_2 Ru(CO)_4]$
- 11 $Re(CO)_3(\mu-I)]_2(\mu-Ph_2Se_2)$
- 12 CymenRuI(μ-I)(PhTeI)
- 13 (C₈H₁₂)(OMe)TeBr₃
- 14 (C₈H₁₂)(OEt)TeBr₃
- 15 (C₈H₁₂)(OMe)TeI₃
- 16 (C₈H₁₂)(OEt)TeI₃
- 17 (C₈H₁₂)Br₂Se

- $18 \qquad (C_8H_{12})Br_2SeBr_2$
- 19 CpFe(CO)₂(TeBr₂Ph)
- 20 CpFe(CO)₂(TeBr₂(OMe)(C₈H₁₂))
- $21 \qquad CpFe(CO)_2(TeI_2(OMe)(C_8H_{12}))$
- 22 (C₈H₁₂)(OEe)TeBr₂CHCBrFc
- 23 $CpFe(CO)_2(\mu-TePh)Fe(CO)_3I_2$
- $24 \qquad [CpFe(CO)_2]_2(\mu\text{-}TePh)_2Re(CO)_3Cl$
- 25 dppePt(µ-TePh)₂Re(CO)₃Cl
- 26 dppePt(TeFc)₂
- 27 dppe(µ-TeFc)₂Re(CO)₃Cl
- $28 \qquad (CO)_3 FeI_2 Te_2 Fc_2$
- 29 CpFe(CO)₂TeFc
- 30 CpFe(CO)₂TeFcBr₂
- 31 CpFe(CO)₂TeFcI₂
- 32 $CpFe(CO)_2(\mu\text{-}TeFc)Fe(CO)_3I_2$
- 33 Cp₃Fe₃(μ-TeFc)₃(μ-CO)CO

Основные публикации по теме работы:

Статьи

1. Ю.В. Торубаев, А.А.Пасынский, А.В.Павлова, Дифенилдихалькогенидные комплексы карбонилов железа, хрома и рения. // Координационная химия, 2012 Т. 38, № 12, С. 838–846.

2. Ю.В. Торубаев, А.А. Пасынский, А.В. Павлова. Разрыв связи металл-металл в [Cp(CO)₂]Fe-Fe(CO)₂]Cp] при действии органотеллур(IV)трибромида. // Координационная химия, 2012, Т.38, №3, С. 229-232.

3. Yu. Torubaev, P. Mathur, M. Tauqeer, M.M. Shaikh, G.K. Lahiri, A. Pasynskii, A. Pavlova , V. Grinberg. Mixed-valent ferrocenyltellurenyl halides. Synthesis, electrochemistry and unusual molecular structure. // Journal of Organometallic Chemistry, 2014, V. 749, P.115-119.

4. Yu. Torubaev, P. Mathur, M. Tauqeer, M.M. Shaikh, G.K. Lahiri, A.A. Pasynskii, Alina Pavlova. Step-by-step transformations of ferrocenyltellurium complexes of VIB metal carbonyls. // Journal of Organometallic Chemistry, 2014. V. 758, P. 55–59.

5. А.А. Пасынский, С.С. Шаповалов, Ю.В. Торубаев, И.В.Скабицкий, А.В. Павлова, О.А. Тихонова, А.С. Сидоренков, Т.А. Криштоп. Циклопентадиенилдикарбонил- железотеллурофенильные комплексы как лиганды. // Координационная химия.2014, Т.40, №.10, С. 579-585.

6. А.А.Пасынский, Ю.В. Торубаев, А.В. Павлова, С.С. Шаповалов, И.В. Скабицкий, Г.Л. Денисов. Фенилтеллурид-мостиковые гетерометаллические комплексы, содержащие трикарбонил рения в сочетании с циклопентадиенил-дикарбонилом железа и бис(дифенилфосфино)этан-платиной. // Координационная химия, 2014, Т.40, №.09, С. 527-532.

7. Y.V. Torubaev, A.A. Pasynskii, A.V. Pavlova, Ivan V. Skabitsky, G. Denisov, V.A. Grinberg. Synthesis and molecular structure of redox active platinum–bis(telluroferrocenyl) complex and its chelated rhenium-chloro(tricarbonyl) derivative. // J. Cluster Sci., 2014, №00, P.000. DOI: 10.1007/s10876-014-0767-4. Published online: 13 August 2014.

1. А.В. Павлова, Ю.В. Торубаев, А.А. Пасынский "Самосборка наноструктурированных кристаллов органотеллургалогенидов" (Тез. докладов с.56). Третья Всероссийская с международным участием школа конференция для молодых ученых "Макромолекулярные нанообъекты и полимерные нанокомпазиты", 23-28 Октября, 2011, Россия.

2. A. Pavlova, Y. Torubaev "Molecular and crystal structures of organic chalcohalides and their organometallic derivatives". (Тез. докладов с. 232). VII Russian Conference on Chemistry of Polynuclear and Cluster Compounds «Cluster-2012», 2012, Novosibirsk, Russia.

3. A.Pavlova, Y.Torubaev "Organotellurium metal-ligands as a building blocks" (Тез. докладов с. 69). Organometallic and Coordination Chemistry: Fundamental and Applied Aspects. International Youth School-Conference on Organometallic and Coordination Chemistry, 1-7 September, 2013, Nizhny Novgorod, Russia.

4. А.В. Павлова, Ю.В.Торубаев "Синтез и молекулярное строение комплексов переходных металлов на основе теллуоорганических металлолигандов" (Тез. докладов с. 83). Школа-конференция молодых ученых «Неорганические соединения и функциональные материалы», 30 Сентября – 4 Октября, 2013, ИНХ СО РАН, Новосибирск, Россия.

5. А.В. Павлова, Ю.В.Торубаев "Особенности строения комплексов переходных металлов на основе теллурорганических металлолигандов" (Тез. докладов с. 212). XX Международная Черняевская конференция по химии, аналитике и технологии платиновых металлов, 7-12 Октября, 2013, Красноярск, Россия.

6. Yu.V. Torubaev, A.A. Pasynskii, A.B. Pavlova, P. Mathur. Organotellurium-Halide Ligands (Тез. Докладов с. 06.8). XXV Международная конференция по металлорганической химии. (XXV ICOMC) 2-7 Сентября, 2012, Лиссабон, Португалия.

7. Yu.V. Torubaev, A.A. Pasynskii, A.B. Pavlova, P.Mathur. «Hypervalent Organotellurium-halide Ligands» (Тез. докладов с. 68). VII Всероссийская конференция по химии полиядерных соединений и кластеров «Кластер-2012», 17-22 Июня, 2012, Новосибирск, Россия.

8. Yu.V. Torubaev, A.A. Pasynskii, A.B. Pavlova, P.Mathur, Mohd Tauqeer. "Organotellurium Halide and Metal Derivatives." (Тез. докладов с. 42). 12 Международная конференция по химии селена и теллура (International Conference on the Chemistry of Selenium and Tellurium ICCST-12), 22-25 Июня, 2013, Кардифф, Великобритания.

85

Список условных сокращений

 $p-Tol-пара-толил (p-CH_3C_6H_5)$

ТМNО – триметиламиноксид ([CH₃]₃NO)

- Ме-метил (СН₃)
- Et этил (C₂H₅)
- ТНF тетрагидрофуран (C₄H₈O)
- $Ph фенил (C_6H_5)$
- PPN -бис(трифенилфосфин)имин [(C₆H₅)₃P)₂N]
- Fc ферроцен (C₅H₅)₂Fe
- COD 1,5-циклооктадиен (С₈H₁₂)
- Ср циклопентадиенил (С5Н5)
- Cp^* декаметилциклопентадиенил (µ₅-C₅Me₅)
- Cymen 4-изопропилтолуол (С₁₀Н₁₄)
- dppe 1,2-бис(дифенилфосфин)этан [(C₆H₅)₂P(CH₂)₂P(C₆H₅)₂]
- dppm 1,1-бис(дифенилфосфин)метан [(C₆H₅)₂PCH₂P(C₆H₅)₂]
- РСА рентгеноструктурный анализ
- СКР сумма ковалентных радиусов
- НЭП неподеленная электронная пара
- ЯМР ядерный магнитный резонанс
- ТСХ тонкослойная хроматография
- ЦВА Циклическая вольтамперометрия

Таблица ковалентных радиусов "Covalent radii revisited"

B. Cordero, V. Gromez, A. E. Platero-Prats, M, Revres, J. Echeverrra, E. Cremades, F

Barragtan and S. Alvarez // Dalton Trans., 2008, 2832–2838.

Ζ	Element	r (Å)
1	Н	0.31
2	Не	0.28
3	Li	1.28
4	Be	0.96
5	В	0.84
6	Csp ³	0.76
	Csp ²	0.73
	Csp	0.69
7	N	0.71
8	0	0.66
9	F	0.57
10	Ne	0.58
11	Na	1.66
12	Mg	1.41
13	Al	1.21
14	Si	1.11
15	Р	1.07
16	S	1.05
17	Cl	1.02
18	Ar	1.06
19	Κ	2.03
20	Ca	1.76
21	Sc	1.70
22	Ti	1.60
23	V	1.53
24	Cr	1.39
25	Mn l.s.	1.39
	h.s.	1.61
26	Fe l.s.	1.32
	h.s.	1.52
27	Co l.s.	1.26
	h.s.	1.50
28	Ni	1.24
29	Cu	1.32
30	Zn	1.22
31	Ga	1.22
32	Ge	1.20
33	As	1.19
34	Se	1.20
35	Br	1.20
36	Kr	1.16
37	Kb	2.20
38	Sr	1.95
39	Y	1.90

40	Zr	1.75
41	Nb	1.64
42	Мо	1.54
43	Тс	1.47
44	Ru	1.46
45	Rh	1.42
46	Pd	1.39
47	Ag	1.45
48	Cd	1.44
49	In	1.42
50	Sn	1.39
51	Sb	1.39
52	Те	1.38
53	Ι	1.39
55	Cs	2.44
56	Ba	2.15
57	La	2.07
58	Ce	2.04
59	Pr	2.03
60	Nd	2.01
61	Pm	1.99
62	Sm	1.98
63	Eu	1.98
64	Gd	1.96
65	Th	1.94
66	Dv	1.92
67	Ho	1.92
68	Er	1.89
69	Tm	1.90
70	Yb	1.87
71	Lu	1.87
72	Hf	1.75
73	Та	1.70
74	W	1.62
75	Re	1.51
76	Os	1.44
77	Ir	1.41
78	Pt	1.36
79	Au	1.36
80	Hg	1.32
81	TI	1.45
82	Pb	1.46
83	Bi	1.48
55		

Список используемой литературы

¹ M.M. Campos, N. Petragnani. Organic tellurium compounds. Vinylic and ethynylic tellurium derivatives // Tetrahedron, 1962, 18, P. 527–530.

 2 X. Huang, Y.-P. Wang. Stereoselective synthesis of (Z) - or (E)-bromovinyl tellurides and their application in the synthesis of trisubstituted alkenes // Tetrahedron Lett., 1996, 41, P. 7417–7420.

³ Самсонов Г.В., Дроздова С.В. Сульфиды. М., 1972

⁴ Оболончик В.А. Селениды. М., 1972.

⁵ Янаки А.А. Теллуриды переходных металлов. М., 1990.

⁶ Физика и химия соединений А^{II}В^{VI}. // Под ред. С.А.Медведева. М.: Мир, 1970.

⁷ Берченко Н.Н. и др. // Полупроводниковые твердые растворы и их применение. М.: Воениздат. 1982.

⁸ V.V. Fedorov, S.B. Mirov, A. Gallian. 3.77-5.05-μM Tunable Solid-State Lasers Based on Fe²⁺-Doped ZnSe Crystals Operating at Low and Room Temperatures. // IEEE J. Quant. Electron, 2006, 42(9), P. 907.

⁹ P. Jaitner. Synthesis and spectroscopic properties of selenolato- and tellurolato-bridged dimolybdenum (*Mo=Mo*) complexes $[(\eta^5-MeCp)Mo(CO)(\mu-EPh)]_2$ (E = Se, Te) // J. Organometal. Chem., 1982, 233, P. 333-336.

¹⁰ L.Y. Goh, M. S. Tay, W. Chen. (Tellurolato)chromium Complexes. Syntheses and Crystal Structures of CpCr(CO)₃(TePh), [CpCr(CO)₂(TePh)]₂, and [CpCr(TePh)]₂Te // Organometallics, 1994, 13, P. 1813-1820.

¹¹ R. E. Cobbledick, N. S. Dance, F. W. Einstein. Crystal structures of two isomeric forms of bis[.mu.-((p-ethoxyphenyl)tellurio)]-bis(cyclopentadienylcarbonyliron) // Inorg. Chem., 1981, 20, P. 4356-4360.

¹² M. Herberhold, J. Peukert, M. Kruger. Binuclear CpV, Cp*V, and Cp*Ta Complexes containing Organochalcogenolato Bridges, μ -ER (E=Sulfur, Selenium, Tellurium; R=Methyl, Phenyl, and Ferrocenyl) // Z. Anorg. Allg. Chem., 2000, 626, P. 1289-1295.

¹³ E.D. Schermer, W.H. Baddley. Tellurium and selenium derivatives of π -cyclopentadienyliron dicarbonyl. // J. Organomet. Chem., 1971, 27, P. 83-88.

 14 L.-C. Song, Y.-C. Shi, W.-F. Zhu. Investigations on Novel Tandem Reaction of Three Components, $[\eta^5-RC_5H_4(CO)_2Mo]_2$, Ph_2Te_2, and Cp_2TiCl_2, Cp_2ZrCl_2, or Cp_2ZrBr_2. Synthesis and Structural Characterization of Tetrakis- and Bis-Bridged Dimolybdenum Complexes (η^5 -

 $RC_5H_4Mo)_2(\mu$ -PhTe)₄ (R = MeCO, MeO₂C, EtO₂C), (η^5 -RC₅H₄Mo)₂(μ -Cl)(μ -PhTe)₃ (R = MeCO, MeO₂C, EtO₂C), (η^5 -RC₅H₄Mo)₂(μ -Br)(μ -PhTe)₃ (R = MeO₂C, EtO₂C), and [η^5 -RC₅H₄(CO)₂Mo]₂(μ -PhTe)₂ (R = MeO₂C, EtO₂C). // Organometallics, 2000, 19, P. 156-162.

¹⁵ L.-C. Song, Y.-C. Shi, Q.-M. Hu. Reactions of metal–metal triply bonded complexes $[(\eta^5 - RC_5H_4)_2M_2(CO)_4]$ (M=Mo, W) with diphenyl ditelluride. Crystal structures of $[(\eta^5 - MeC_5H_4)Mo_2(CO)_4(\mu-TePh)_3]$ and $[(\eta^5 - EtO_2CC_5H_4)_2W_2(CO)_4(\mu-TePh)_2]$. // J. Organomet. Chem., 2001, 626, P. 192-198.

¹⁶ Wen-Feng Liaw, Der-Shiaw Ou, Yu-Shiou Li, Way-Zen Lee, Chih-Yuan Chuang, Yi-Pei Lee, Gene-Hsiang Lee, Shie-Ming Peng. Oxidative Addition of Diorganyl Ditellurides to $[Mn(CO)_5]$: Crystal Structures of cis-[Na-18-crown-6-ether 2THF][Mn(CO)₄(TePh)₂], [PPN][(CO)₃Mn(μ-TePh)₃Mn(CO)₃], (CO)₃Mn(μ-TePh)₃Co(CO)(μ-TePh)₂Mn(CO)₄, and (CO)₄Mn(μ-TePh)₂Mn(CO)₄, // Inorg.Chem., 1995, 34, P. 3747-3754.

¹⁷ E.W. Abel, J. Dalton, I. Paul, J.G. Smith. Spectroscopic studies on organometallic compounds. Part XIII. Infrared spectra of octacarbonyldimanganese complexes and related compounds in the carbonyl stretching region. // J. Chem.SOC. A., 1968, P. 1203-1208.

¹⁸ Wen-Feng Liaw, Chih-Yuan Chuang, Way-Zen Lee, Chen-Kang Lee, Gene-Hsiang Lee, Shi-Ming Peng. An Approach to Heterometallic Complexes with Selenolate and Tellurolate Ligands: Crystal Structures of *cis*-[Mn(CO)₄(SePh)₂]⁻, [(CO)₃Mn(μ -SeMe)₃Mn(CO)₃]⁻, (CO)₄Mn(μ -TePh)₂Co(CO)(μ -SePh)₃Mn(CO)₃, and (CO)₃Mn(μ -SePh)₃Fe(CO) // Inorg.Chem., 1996, 35, P. 2530-2537.

¹⁹ A.A. Pasynskii, Yu.V. Torubaev, I.L. Eremenko. The Syntheses and Molecular Structures of Binuclear Manganese Carbonyl Phenyltellurides: Diamagnetic $Mn_2(CO)_8(\mu$ -TePh)₂ and Paramagnetic $Mn_2(CO)_6(\mu$ -TePh)₃. // Russian J. Coord. Chem., 1996, 22, P. 866–869.

²⁰ C.-K. Hsieh, F.-C. Lo, G.-H. Lee, S.-M. Peng, W.-F. Liaw. Chelating and Tellurolate Ligand-Transfer Studies of the Complex fac-[Fe(CO)₃(TePh)₃]⁻: Crystal Structures of Heterodinuclear (CO)₃Mn(μ -TePh)₃Fe(CO)₃ and CpNi(TePh)(PPh₃). // J.Chin.Chem.Soc. (Taipei), (2000), 47, 103-107.

²¹ H. Matsuzaka, T. Ogino, M. Nishio. Dinuclear (${}^{5}-C_{5}Me_{5}$)Ru complexes triply bridged by tellurium or selenium ligands–syntheses and characterisation of (${}^{5}-C_{5}Me_{5}$)Ru($_{2}$ -RTeTeR)($_{2}$ -TeR) $_{2}Ru(_{5}-C_{5}Me_{5})$ and [(${}^{5}-C_{5}Me_{5}$)Ru($_{2}$ -SeR) $_{3}Ru({}^{5}-C_{5}Me_{5})$]Cl (R = Tol, Ph). // J. Chem. Soc., Chem. Commun., 1994, P. 223-224.

²² Y. Nishibayashi, H. Imajima, G. Onodera. Preparation of Alkanechalcogenolate- and Benzenechalcogenolate-Bridged Diruthenium Complexes and Their Catalytic Activity toward Propargylation of Acetone with Propargylic Alcohol. // Organometallics, 2004, 23, P. 5100-5103.

²³ N.Begum, Md.I. Hyder, M.R. Hassan, S.E. Kabir, D.W. Bennett, D.T. Haworth, E. Rosenberg.

Facile E–E and E–C Bond Activation of PhEEPh (E = Te, Se, S) by Ruthenium Carbonyl Clusters: Formation of Di- and Triruthenium Complexes Bearing Bridging dppm and Phenylchalcogenide and Capping Chalcogenido Ligands. // Organometallics, 2008, 27, P. 1550–1560.

²⁴ Noorjahan Begum, Md. Iqbal Hyder, Mohammad R. Hassan, Shariff E. Kabir, Dennis W. Bennett, Daniel T. Haworth, Tasneem A. Siddiquee, Dalia Rokhsana, Ayesha Sharmin, Edward Rosenberg. // Organometallics, 2008, 27, P. 1550–1560.

²⁵. I.D. Sadekov. V.I. Minkin. Synthesis, Reactions, and Structure of Organic Tellurenyl Derivatives. // Rus. J. Org. Chem. (Zh. Org. Khim.), 1999, 35(7), P. 953-975.

²⁶. P. Schulz, G. Klar. Darstellung von Aryltellurenylhalogeniden. // Z. Naturforsch., 1975, 30b, P. 40-42.

²⁷. E.S. Lang, R.M.Jr. Fernandes, E.T. Silveira et al. Structures of Iodophenyltellurium(II) and Diiododi-(β -naphtyl)tellurium(IV). // Z. Anorg. Allg. Chem., 1999, 625, P. 1401.

 28 . P.D. Boyle, W.I. Cross, S.M. Godfrey et al. Synthesis and Characterization of Ph₄Te₄I₄, Containing a Te₄ Square, and Ph₃PTe(Ph)I. // Angew. Chem. Int. Ed., 2000, 39, P. 1796.

²⁹. N.W. Alcock, W.D. Harisson. Secondary bonding. Part 12. Aryltellurium iodides: crystal and molecular structures of *cis-* and *trans-*phenyltellurium(IV) tri-iodide and two modifications of diphenyltellurium(IV) di-iodide. // Dalton Trans., 1984, P. 869-875.

³⁰ J J. Beckmann, M. Hesse, H. Poleschner, K. Seppelt. Formation of Mixed-Valent Aryltellurenyl Halides RX₂TeTeR. // Angew. Chem. Int. Ed. 2007, 46, P. 8277–8280.

³¹ S.Kubiniok, W.-W.du Mont, S.Pohl, W.Saak. The Reagent Diphenyldiselane/Iodine: No Phenylselenenyl Iodide but a Charge Transfer Complex with Cyclic Moietie. // Angew.Chem., Int.Ed., 1988, 27, P. 431-433.

³² N.S. Dance, C.H. W. Jones. ¹²⁹I Mössbauer spectra of tellurium iodides. Part II. // Can. J. Chem., 1981, 59(6), P. 918-922.

³³ J. Beckmann, M. Hesse, H. Poleschner, K. Seppelt. Formation of Mixed-Valent Aryltellurenyl Halides RX₂TeTeR. // Angew. Chem. Int. Ed., 2007, 46, P. 8277–8280.

³⁴ G. Manzoni de Oliveira, E. Faoro, E.S. Lang. New Aryltellurenyl Iodides with Uncommon Valences: Synthetic and Structural Characteristics of $[RTeTeI_2R]$, $[R_2TeTeR_2][Te_4I_{14}]$, and $[RTe(I)I_2]$ (R = 2,6-Dimethoxyphenyl). // Inorg. Chem., 2009, 48(11), P. 4607–4609.

³⁵ T.M. Klapotke, B. Krumm, H. Noth, et al. Kinetic and Donor Stabilization of Organotellurenyl Iodides and Azides. // Inorg. Chem., 2005, 44(15), P. 5254-5265.

³⁶ Klapotke et al. 2,4,6-Tri-*tert*-butylbenzenetellurenyl iodid. // Acta Cryst. Sect., 2005, E61 (12), P. o4045–o4046, doi:10.1107/S1600536805035841.

³⁷ J. Beckmann, M. Hesse. 2,4,6-Tri-*tert*-butylbenzenetellurenyl iodide. // Acta Crystallogr., Sect., 2007, E63 (4), P. 01674-01675, doi:10.1107/S1600536807009749.

³⁸ J. Beckmann, S. Heitz, M. Hesse. Four Distinctively Different Decomposition Pathways of Metastable SupermesityItellurium(IV) Trichloride. // Inorg. Chem., 2007, 46(8), P. 3275-3282.

³⁹ J. Beckmann, M. Hesse. 2,4,6-Tri-*tert*-butylbenzenetellurenyl iodide. // Acta Crystallogr., Sect., 2007, E63(4), P. 01674-01675, doi:10.1107/S1600536807009749.

⁴⁰ I.D. Sadekov. V.I. Minkin. Synthesis, Reactions, and Structure of Organic Tellurenyl Derivatives. // Rus. J. Org. Chem. (Zh. Org. Khim.), 1999, 35(7), P. 953-975.

⁴¹ N. Sudha, H.B. Singh. Intramolecular coordination in tellurium chemistry. // Coord. Chem. Rev., 1994, 135-136, P. 469-515.

 42 J. Bergman, L. Engman. Tellurium in organic synthesis: IV. Carbonylation of some aromatic tellurium compounds in the presence of Ni(CO)_{4.} // J. Organomet. Chem., 1979, 175(2), P. 233-237.

⁴³ Kundu Kalipada. Synthesis and characterization of the Te-Fe bonded complex (4- $EtOC_6H_4$)Te[(η_5 -C₅H₅)Fe(CO)₂]Cl₂. // J. Bangladesh Chem. Soc., 2000, 13, P. 187-189.

⁴⁴. W.R. McWhinnie, P. Thavornyutikarn. A spectroscopic examination of phenyltellurium trihalides. // J. Chem. Soc., Dalton Trans., 1972, P. 551.

⁴⁵ M.M. Campos, N. Petragnani. Organic tellurium compounds. Vinylic and ethynylic tellurium derivatives // Tetrahedron, 1962, 18, P. 527–530.

 46 X. Huang, Y.-P. Wang. Stereoselective synthesis of (Z) - or (E)-bromovinyl tellurides and their application in the synthesis of trisubstituted alkenes // Tetrahedron Lett., 1996, 41, P. 7417–7420.

⁴⁷ Yu.V. Torubaev, A.A. Pasynskii, P. Mathur. (*Z*)-diiodo(2-iodo-2-phenylvinyl)(phenyl) tellurium PhIC=CHTeI₂Ph: Synthesis and complexing properties in a reaction with iron pentacarbonyl. // Russ. J. Coord. Chem., 2008, 34(11), P. 805–810.

⁴⁸ Y. Torubaev, A. Pasynskii, P. Mathur. Regio- and stereo-specific addition of organotellurium trihalides to ferrocenylacetylene: Molecular and crystal structure of (*Z*)-halovinyl organotellurium dihalides. // J. Organom. Chem., 2010, 695(9), P. 1300–1306.

⁴⁹ Y.V. Torubaev, A.A. Pasynskii, P. Mathur. Synthesis and molecular structure of tricarbonyl(diphenyl ditelluride)diiodoiron $(CO)_3FeI_2(Te_2Ph_2)$ and tricarbonyldiiodo[iodo(phenyl)tellurido]iron $(CO)_3FeI_2(PhTeI)$: First example of the coordination of unstable PhTeI to the transition metal atom. // Russ. J. Coord. Chem., 2008, 34(11), P. 799-804.

⁵⁰ W-F. Liaw, M-H. Chiang, C-H. Lai et al. Metal Complexes of Telluroether: Crystal Structure

of (Ph₂Te)Fe(CO)₃I₂ and (Ph₂Te)W(CO)₅. // Inorg. Chem., 1994, 33(11), P. 2493-2493.

⁵¹ Y. Torubaev, A. Pasynskii, P. Mathur. Synthesis and X-ray investigation of novel Fe and Mn phenyltellurenyl-halide complexes: $(CO)_3FeBr_2(PhTeBr)$, $(\eta^5-C_5H_5)Fe(CO)_2(PhTeI_2)$ and $CpMn(CO)_2(PhTeI)$. // J. Organom. Chem., 2009, 694(12), P. 1781–1785.

⁵² A. Bondi. van der Waals Volumes and Radii. // J. Phys. Chem., 1964, 68, P. 441–451.

⁵³ Y.V. Torubaev, A.A. Pasynskii, P. Mathur. Phenyltellurenyl halide complexes of ruthenium and rhenium $(CO)_2RuBr_2(PhTeBr)_2$ and $(CO)_3Re(PhTeI)_3(\mu^3-I)$: Synthesis and crystal and molecular structures. // Russ. J. Coord. Chem., 2009, 35(11), P. 807–811.

⁵⁴ X. Lin, H.-Y. Chen, L.-S. Chi, H.-H. Zhuang. Synthesis and crystal structures of two new trinuclear molybdenum cluster compounds containing a $[Mo_3Te_7]^4$ fragment. // Polyhedron, 1999, 18(1-2), P. 217-223.

⁵⁵ C.G. Hrib, J. Jeske, P.G. Jones, W.-W.du Mont. Telluroselenophosphonium ions: their unusual soft–soft interactions with iodotellurate anions. // Dalton Trans., 2007, P. 3483-3485.

⁵⁶ N.J. Hill, W. Levason, G. Reid, A.J. Ward. Synthesis and molecular structures of dimeric assemblies of telluronium salts derived from $o-C_6H_4(CH_2TeMe)_2$ and PhMeTe. // J.Organomet. Chem., 2002, 642(1-2), P. 186-190.

⁵⁷ Y.V. Torubaev, A.A. Pasynskii, A.R. Galustian, P. Mathur. Synthesis and molecular structures of the cobalt complexes $(\eta^4-C_4Me_4)Co(CO)_2SnCl_3$, $(\eta^4-C_4Me_4)Co(CO)_2(TeI_2Ph)$, and $(\eta^4-C_4Me_4)Co(CO)_2(TeBrIPh)$ with the shortened Co-Sn and Co-Te bonds. // Russ. J. Coord. Chem., 2009, 35(1), P. 1-5.

⁵⁸ Y.V. Torubaev, A.A. Pasynskii, and I.V. Skabitskii. Phenyltellurium halide complexes of iron cyclopentadienyl dicarbonyl: Synthesis and molecular structures of CpFe(CO)₂TePh, CpFe(CO)₂TeBr₂Ph, CpFe(CO)₂TeBrPh(μ -Br)Br₃TePh, and PhTeI₃(C₄H₈O). // Russ. J. Coord. Chem., 2009, 35(5). P. 341–346.

⁵⁹ M.R. Detty, A.E. Friedman, M. McMillan. A Stepwise Mechanism for Oxidative Addition of Bromine to Organoselenium(II) and Organotellurium(II) Compounds. // Organometallics, 1994, 13(8), P. 3338-3345.

⁶⁰ A.A. Pasynskii, Yu. V. Torubaev, I.L. Eremenko. Synthesis and Molecular Structure of Bis(cyclopentadienylcarbonylmanganese) Diphenylditellurium. // Russ. J. Inorg. Chem., 1997, 42(5), P. 648-651.

⁶¹ M. Sato, T. Yoshida. Preparation of organochalcogen-bridged dinuclear complexes of titanium or niobium and iron or cobalt. // J. Organometal. Chem., 1975, 94(3), P. 403-408.

⁶² T. Nakagawa, H. Seino, Y. Mizobe. A series of multinuclear homo- and heterometallic complexes with bridging tellurolato ligands derived from $[Cp*Ir(CO)(TeTol)_2]$ ($Cp* = \eta^5 - C_5 Me_5$,

Tol = *p*-tolyl). // J. Organometal. Chem., 2010, 695(1), P. 137-144.

⁶³ А.А. Пасынский, И.В. Скабицкий, С.С. Шаповалов, А.Р. Галустян, Ю.В. Торубаев, В.А. Гринберг. Синтез, молекулярная структура и свойства гетерометаллических тетраметилциклобутадиеновых комплексов кобальта (C₄Me₄)-CO(CO)₂TePh,(C₄Me₄)CO(CO)₂TePh[W(CO)₅] и Me₄C₄CO(μ_3 -S)₂CR₂Cp₂ (μ -SC₄H₉). // Известия РАН, сер. Хим., 2007, 9, Р. 1669-1673.

⁶⁴ А.А. Пасынский, С.С. Шаповалов, Ю.В. Торубаев, И.В.Скабицкий, А.В. Павлова, О.А. Тихонова, А.С. Сидоренков, Т.А. Криштоп. Циклопентадиенилдикарбонил- железотеллурофенильные комплексы как лиганды. // Координационная химия, 2014, 40(10), С. 579-585.

⁶⁵ B. Cordero, V. Gomez, A. E. Platero-Prats et al. Covalent radii revisited. // Dalton Trans., 2008, P. 2832-2838.

⁶⁶ A.L. Fuller, L.A.S. Scott-Hayward, Y. Li, et al. Automated Chemical Crystallography. // J. Am. Chem. Soc., 2010, 132(16), P. 5799-5802.

⁶⁷ Y. Torubaev, P. Mathur, M. Tauqeer, M. M. Shaikh, G. K. Lahiri, A. Pasynskii , A. Pavlova , V. Grinberg, J.Organomet. Chem. 749 (2014)115

⁶⁸. A. Appel, H. Noth, M. Schmidt. Contributions to the Chemistry of Boron, 230. Electrophilic Borylation of Metallocenes: Synthesis and Molecular Structures of 1,1',3,3'-Tetrakis(dibromoboryl)metallocenes of the Iron Triad. // Chem. Ber, 1995, 128(6), P. 621-626.

⁶⁹. B.E. Carpenter, W.E. Piers, M. Parvez, G.P.A. Yap, S.J. Rettig. Synthesis, characterization and chemistry of bis-(pentafluorophenyl)boryl ferrocene. // Can. J. Chem., 2001, 79, P. 857–867.

⁷⁰. U. Behrens. Übergangsmetall—fulven-komplexe: XIV. Kristall- und Molekülstruktur von ferrocenyldiphenylcarbenium-tetrafluoroborat, $[Cn_5H_5FeC_5H_4C(C_6H_5)_2]^+$ BF₄-. Ein Fulveneisen-komplex? // Organomet. Chem., 1979, 182(1), P. 89-98.

⁷¹ R.L. Sime, R.J. Sime. Crystal structure of ferrocenyldiphenylcyclopropenium tetrafluoroborate, a stable carbonium ion salt. // J. Am. Chem. Soc., 1974, 96(3), P. 892–896.

⁷². K. Muther, R. Frohlich, C. Muck-Lichtenfeld, Stefan Grimme, Martin Oestreich. A Unique Transition Metal-Stabilized Silicon Cation. // J. Am. Chem. Soc., 2011, 133(32), P. 12442–12444.

⁷³ B. Wrackmeyer, U. Dörfler, W. Milius, M. Herberhold. Metal-boron interactions in boronsubstituted ferrocenes, ruthenocenes and osmocenes. // Polyhedron, 1995, 14(11), P. 1425–1431.

⁷⁴ A. Houlton, J.R. Miller, R.M.G. Roberts, J. Silver. Studies of the bonding in iron(II) cyclopentadienyl and arene sandwich compounds. Part 2. Correlations and interpretations of carbon-13 and iron-57 nuclear magnetic resonance and iron-57 mössbauer data. // J. Chem. Soc.,

Dalton Trans., 1991, P. 467-470.

⁷⁵ Yu. Torubaev, P. Mathur, M. Tauqeer, M.M. Shaikh, G.K. Lahiri, A. Pasynskii, A. Pavlova, V. Grinberg. Mixed-valent ferrocenyltellurenyl halides. Synthesis, electrochemistry and unusual molecular structure. // Journal of Organometallic Chemistry, 2014,749, P. 115-119.

 76 J. Zukerman-Schpector, I. Haiduc. Tellurium--- π -aryl interactions: a new bonding motif for supramolecular self-assembly and crystal engineering. // Cryst. Eng. Comm., 2002, 4(33), P. 178–193.

⁷⁷ Y.V. Torubaev, A.A. Pasynskii, and I.V. Skabitskii. Phenyltellurium halide complexes of iron cyclopentadienyl dicarbonyl: Synthesis and molecular structures of CpFe(CO)₂TePh, CpFe(CO)₂TeBr₂Ph, CpFe(CO)₂TeBrPh(μ -Br)Br₃TePh, and PhTeI₃(C₄H₈O). // Russ. J. Coord. Chem., 2009, 35(5). P. 341–346.

⁷⁸ Yu.V. Torubaev, A.A. Pasynskii, P. Mathur. (*Z*)-diiodo(2-iodo-2-phenylvinyl)(phenyl) tellurium PhIC=CHTeI₂Ph: Synthesis and complexing properties in a reaction with iron pentacarbonyl. // Russ. J. Coord. Chem., 2008, 34(11), P. 805–810.

⁷⁹ W. Levason et al. Recent developments in the chemistry of selenoethers and telluroethers. // Coordination Chemistry Reviews, 2002, 225(1-2), P. 159–199.

⁸⁰ Руководство по неорганическому синтезу: В 6-ти т. Под ред. Г. Брауэра. – М.: Мир, 1986 — Т. 6, стр. 2061

⁸¹ M.Risto, E.M. Jahr, M.S. Hannu-Kuure, R. Oilunkaniemi, R.S. Laitinen. Structural and spectroscopic trends in mononuclear arylchalcogenolato-palladium(II) and -platinum(II) complexes: Crystal structures of [M(TeAr)₂(dppe)] {M=palladium, platinum; Ar=phenyl, 2-thienyl; dppe=1,2-bis(diphenylphosphino)ethane}. // J.Organomet.Chem., 2007, 692(11), P. 2193-2024.

⁸² A.A. Pasynskii, I.V. Skabitsky, Yu.V. Torubaev. Formation of Pt-S-Mn groups in platinum triphenylphosphine complexes with cymanthrenylthiolate ligands. // Russ. Chem. Bull., 2005, 54(7), P. 1552.

⁸³ N.V.Kirij, W.Tyrra, I.Pantenburg, D.Naumann, H.Scherer, D.Naumann, Yu.L.Yagupolskii. Trifluoromethylselenato(0) and trifluoromethyltellurato(0) complexes of platinum(II). // J.Organomet.Chem., 2006, 691(12), P. 2679–2685.

⁸⁴ M.R. Burgess, Su Jing, C.P. Morley, C. Thone. Reactions of diferrocenyl dichalcogenides with $[W(CO)_5(THF)]$: X-ray crystal structures of Fc_2Te_2 and $[W_2(\mu-SeFc)_2(CO)_8]$ (Fc=[Fe($\eta^5-C_5H_5$)($\eta^5-C_5H_4$)]). // J. Organomet. Chem., 2006, 691(23), P. 4963-4967.

⁸⁵ L.F. Pasteka, T. Rajský, M. Urban. Toward Understanding the Bonding Character in Complexes of Coinage Metals with Lone-Pair Ligands. CCSD(T) and DFT Computations. // J. Phys. Chem. A. 2013, 117(21), P. 4472-4485.

⁸⁶ S.S. Shapovalov, A.A. Pasynskii, I.V. Skabitskii, A.S. Sidorenkov, T.A. Krishtop, and V.V. Minin. Neutral and Monocationic Dinuclear (Carbonyl)(cyclopentadienyl)(phenylchalcogenate) Iron Complexes of the General Formulas $[(RC_5H_4)Fe(CO)EPh]_2$ and $[(RC_5H_4)Fe(CO)EPh]_2PF_6$ (E=S or Te; R=H or Me): Synthesis, Molecular Structures, and EPR Spectra. // Russ. J. Coord. Chem., 2013, 39(12), c. 822-828.

⁸⁷ K.J. Irgolic, P.J. Busse, R.A. Grigsby, M.R. Smith. Phenylalkyl tellurides. // J. Organomet. Chem., 1975, 88(2), P. 175-180.

⁸⁸ SHELXTL-97 V5.10, Bruker AXS Inc., Madison, USA, 1997