Отзыв
официального оппонента на диссертацию Николаева Виталия Александровича на тему «Золь-гель синтез наноматериалов различного типа на основе диоксида и карбида титана», представленную к защите на соискание ученой степени кандидата химических наук по специальности 02.00.01 – неорганическая химия

Представленная к защите диссертационная работа имеет традиционную структуру и состоит из введения (с. 4 – 11), литературного обзора (с. 12 – 71), экспериментальной части (с. 72 – 133), выводов (с. 134 – 135) и списка цитируемой литературы, включающего 243 источника (с. 136 – 163). Основные результаты работы опубликованы в 4-х журналах, рекомендованных ВАК (3 в Журнале неорганической химии и 1 краткие сообщения в журнале Mendeleev Comonincations за март-априль 2018 г.) и отражены в 11-ти тезисах докладов на конференциях.

Во введении автором сформулированы основные положения по актуальности, научной новизне и практической значимости работы, цель исследований и положения, выносимые на защиту, а также иные характеристики работы.

В литературном обзоре достаточно подробно критически рассмотрены вопросы получения, свойства, области применения объектов исследования, создание которых в дальнейшем представлено в экспериментальной части диссертации. Отмеченное относится к дисперсным оксиду и карбиду титана и пленкам на их основе, а также к керамическим карбидотитановым материалам и композициям SiC/TiC, в которых карбид титана распределен в каркасе из карбива кремния. Указанные материалы как в трехмерном состоянии, так и в виде пленок, а также в составе керамических композитов находят широкое применение в высокотехнологичных отраслях.

Среди известных методов получения как дисперсных, так и волокнистых, пленочных материалов достаточно хорошо зарекомендовал себя золь-гель процесс. При этом с его использованием удается синтезировать наночастицы и нанопокрытия, что представляет особую важность в связи с развитием исследований в области создания и свойств материалов в нанокомпозитном состоянии. Николаев В.А. рассмотрел различные способы получения рассматриваемых соединений, остановив свой выбор для более полного обсуждения на золь-гель процессе. Этот процесс известен уже более ста лет, но, тем не менее, автору удалось после критического рассмотрения ранее полученных данных, выявить ряд в недостаточной степени исследованных вопросов, которые и были положены в основу предложенной цели диссертационной работы, а также решаемых задач для ее достижения. В частности, при анализе литературных источников отмечалось, что недостаточно внимания в работах уделяется кинетике изменения реологических свойств растворов исходных реагентов, которые оказывают существенное влияние на формирование целевых продуктов с заданными физико-химическими и функциональными свойствами. Ключевым при постановке исследований является выявление влияния состава исходных реагентов, в качестве которых применяли алкоксоацетилацетонаты титана, различающиеся составом координационной сферы, на их реакционную способность при гидролизе и поликонденсации.

Таким образом, на основании рассмотрения содержания литературного обзора и сформулированных Николаевым В.А. цели исследований, решаемых задач для ее реализации, положений, выносимых на защиту, можно сделать заключение, что
актуальность рассматриваемой диссертационной работы не вызывает сомнений, о чем свидетельствует также поддержка исследований грантами РФФИ, Президента РФ, Президиума и Отделения Химии и Наук о МатерияхРАН.

Следует отметить удачное использование в соответствующих разделах литературного обзора данных по статистическому анализу золь-гель синтеза диоксида титана (раздел 1.5) и методам получения карбида титана (раздел 1.6), которые дополнили в формализованном виде обоснование актуальности направления исследований.

Экспериментальная часть диссертационной работы построена вполне логично и последовательно отражает общие подходы к решению поставленных задач, состав применяемого синтетического оборудования, исходных реагентов, используемых современных методов идентификации синтезируемых продуктов.

Главное внимание на первом этапе работы (раздел 2.3) уделено получению активных комплексов состава [Ti(OC4H9)4-x(O2C5H7)x] и изучению их превращений в водно-спиртовых растворах на различных стадиях золь-гель процесса, кинетики изменения динамической вязкости растворов в процессе гидролиза и поликонденсации для соединений с различными составом координационной сферы, концентрацией, а также соотношением n(H2O)/n(Ti4+). На основании выявленных закономерностей в дальнейшем изучены термические превращения ксерогелей, синтезированных с использованием растворов комплексов с разными исходными характеристиками и концентрациями.

С применением синхронного (ТГА/ДСК) термического анализа ксерогелей установлено, что на термопревращения в системе при формировании частиц диоксида титана наиболее существенное влияние оказывает не состав координационной сферы или соотношение n(H2O)/n(Ti4+), а концентрация комплексов в растворах на стадии их гидролиза и поликонденсации. Образующиеся порошки диоксида титана охарактеризованы методами рентгеновского анализа и растровой электронной микроскопии, установлены режимы фазового перехода анатаз – рутил.

Получение различающихся толщиной пленок диоксида титана (раздел 2.5) проводили методом окунания (dip-coating) монокристаллических кремниевых пластин в раствор комплексов состава [Ti(OC4H9)3.61(O2C5H7)0.39] (с(Ti4+)=0,25 моль/л, n(H2O)/n(Ti4+)=18,69). Изучена эволюция микроструктуры пленок TiO2 в процессе кристаллизации и фазового перехода анатаз – рутил, температура которого значительно снижается с увеличением толщины пленки. Показано, что толщина покрытия возрастает с увеличением вязкости исходного раствора. Приведены результаты по применению синтезированных наноструктурированных пленок диоксида титана в качестве компонентов сенсорных датчиков на кислород в диапазоне концентраций 1 – 15 % при рабочих температурах 350 – 450° C.

Используя аналогичные рассмотренными методические подходы, изучен гидролиз комплексов [Ti(OC4H9)4-x(O2C5H7)x] в присутствии фенолформальдегидной смолы (раздел 2.6). Полученные на основании проведенных исследований результаты легли в основу формирования высокодисперсной смеси «диоксид титана – углерод», из которой при пониженном давлении и термообработке (1200 и 1400° C) синтезировали порошок нанокристаллического карбида титана, содержащийся в ряде случаев (синтез при 1200° C) оксид титана (3+) (раздел 2.7). Из высокодисперсных смесей «диоксид титана – углерод», синтезированных с применением комплексов титана с
различным составом координационной сферы, получены путем горячего прессования и искрового плазменного спекания образцы карбидотитановой керамики с различной пористостью (от 69,1 до 23,2%) (раздел 2.9).

Как и в случае пленок диоксида титана, для формирования покрытий из наноструктурированного карбида титана на полиэтиленовых полиэтиленлакрилатных Al₂O₃-подложках (раздел 2.8) использовало метод окунания в раствор [Ti(OC₄H₉)₁2₅O₂C₃H₇]₂₇₅, содержащий фенолформальдегидную смолу, (c(Ti⁴⁺)=0,25 моль/л, n(H₂O)/n(Ti⁴⁺)=1, n(HCOOH)/n(Ti⁴⁺)=1,5). Покрытия охарактеризованы методами РФА и СЭМ.

В заключительной части диссертации (раздел 2.10) изложены результаты исследований по получению композиционных материалов, представляющих собой пористый (около 60%) каркас из карбида кремния, заполненный карбидом титана. Формирование карбида титана в пористом пространстве SiC - каркаса осуществлено путем пропитки его раствором комплекса титана с различным составом координационной сферы и разной вязкостью в присутствии фенолоформальдегидной смолы с последующей термообработкой. Регулируя состав комплекса, который влияет на его реакционную способность при взаимодействии с водой, в пористом пространстве карбида кремния протекало формирование геля и затем ксериогеля. После высушивания композицию подвергали ступенчатому нагреву, в результате чего в пористом карбидокремниевом каркасе формировалась матрица из высокодисперсного наноструктурированного карбида титана с заданной плотностью.

Анализ полученных в экспериментальной части результатов позволяет сделать вывод, что представленная работа обладает несомненной научной новизной, а к основным научным достижениям соискателя следует отнести следующие.

1. Проведены комплексные исследования, базирующиеся на золь-гель процессах, скорость протекания которых в водно-спиртовой среде определяется составом координационной сферы в комплексах [Ti(OC₄H₉)₉₋ₓ(O₂C₃H₇)ₓ], их концентрацией и соотношением n(H₂O)/n(Ti⁴⁺), что легко в основу разработки научно-методологических подходов для синтеза дисперсных, пленочных и композиционных материалов на основе диоксида и карбида титана.

2. Получены новые результаты по кинетике изменения динамической вязкости растворов в процессе гидролиза и поликонденсации для соединений с различными составом координационной сферы, концентрацией, а также соотношением n(H₂O)/n(Ti⁴⁺).

3. Установлена взаимосвязь между составом прекурсоров, вязкостью их растворов и свойствами объемных и пленочных наноструктурированных оксидов и карбидов титана, формирующихся в процессе гидролиза и поликонденсации с последующей термообработкой.

4. Предложен оригинальный метод получения карбидотитановой керамики при относительно низких температурах (1500 – 1700° C) путем реакционного спекания высокодисперсных «TiO₂-C» систем, полученных золь-гель методом при добавлении к раствору прекурсора фенолоформальдегидной смолы в качестве полимерного источника углерода.

5. Одним из наиболее важных научных достижений в работе является создание на основе золь – гель процессов композиционного материала, представляющего собой пористый карбидокремниевый каркас, заполненный
наноструктурированной матрицей из карбida титана. При этом проиллюстрирована возможность регулировать в заданном направлении плотность, структуру, функциональные свойства керамоматричных композиций в зависимости от состава координационной сферы алкоксоацетилациетонатов титана.

Достоверность полученных в работе результатов и обоснованность выводов основывается на комплексном подходе при исследовании как золь-гель превращений, так и идентификации полученных целевых продуктов с применением современных физико-химических методов (совмещенный метод ДСК/ТГА/ДТА, рентгеновский анализ, КР-спектроскопия, атомно-силовая, растровая и просвечивающая электронная микроскопия, аборбционные методы, рентгеновская компьютерная микротомография), а также апробацией работы на всероссийских и международных научных конференциях.

В работе отражен как личный вклад соискателя в получении результатов, так и участие в работе соавторов Николаева В.А. по совместным публикациям.

Учитывая актуальность и востребованность выбранных в качестве объектов получения и исследования материалов на основе оксида и карбида титана, практическая значимость рассматриваемой диссертационной работы также не вызывает сомнений и подтверждена как конкретными свойствами тонкопленочных структур диоксида титана в составе элементов сенсорного датчика на кислород, так и перспективами использования функционально-градиентных высокотемпературных композиционных материалов SiC/TiC, керамик и легирующих добавок на основе TiC. Возможность масштабирования предложенных методов является одним из существенных практически полезных факторов, обеспечивающим перспективы создания промышленной технологии разработанных материалов.

По содержанию диссертационной работы имеется ряд вопросов, пожеланий и замечаний.

1. Как отмечено выше, в литературном обзоре достаточно полно изложено современное состояние исследований в выбранном соискателем направлении. В то же время, его объем излишен велик и составляет, фактически, половину диссертационной работы. Целесообразно было несколько сократить литературу, например, в части общих описаний свойств наноматериалов (раздел 1.1), областей применения целевых продуктов (разделы 1.3, 1.7) и др.

2. Достаточно подробно в экспериментальной части работы изложены условия синтеза алкоксоацетилациетонатов титана различного состава, включая процесс их гидролиза в присутствии фенолоформальдегидной смолы (стр. 73 – 74, 99 - 101), режимы спекания высокодисперсных смесей «TiO₂–С» с образованием нанокристаллической TiC-керамики (стр. 121 – 122) и др. К сожалению, фактически, нигде не приводится обоснование временных, температурных и др. выбранных условий синтеза.

3. Было бы целесообразно представить в виде конкретных или предполагаемых схем химических реакций, протекающих при гидролизе и последующей поликонденсации активных комплексов состава [Ti(O(CH₃)₃)₄, x(O₂C₂H₇)₃] на разных стадиях золь-гель процесса, в том числе, и в присутствии фенолоформальдегидной смолы.

4. Как можно представить структуру, например, комплекса [Ti(OC₄H₉)]_1.25(O₂C₂H₇)_2.75: это комплексы с частичным замещением одного лиганда на другой в координационной сфере, или это смесь [Ti(OC₄H₉)]_4 и [Ti(O₂C₂H₇)_₄],
или какой-то иной вариант структуры? И, как следствие, возможно ли оценить механизм их превращений на разных стадиях золь-гель синтеза?

5. В работе исследована кинетика изменения динамической вязкости растворов в процессе гидролиза и поликонденсации комплексов состава [Ti(OС4H8)4-x(О2С3H7)x]. Было бы целесообразно дополнить кинетические исследования значениями, например, энергию активации протекающих химических превращений.

6. В разделе 2.4 (стр. 80 – 87) комплексно с применением (ТГА/ДСК) термического анализа ксерогелей, рентгеновского анализа и растровой электронной микроскопии исследованы фазовые превращения в составе полученных порошков диоксида титана, морфология их поверхности. Сделан интересный и достаточно убедительный вывод, что в образцах, полученных из растворов с меньшей концентрацией комплекса (c(Ti4+) = 0,25 моль/л) фазовый переход анализ — рутный происходит при гораздо более низкой температуре, чем для порошков ксерогелей, полученных из более концентрированных растворов комплексов (c(Ti4+) = 0,50 и 0,70 моль/л). К сожалению, автор, подробно изложив экспериментальное обоснование наблюдающегося эффекта, не объяснил или не попытался объяснить, чем обусловлена разница в температуре такого перехода.

7. Несколько пожеланий методического плана:
- учитывая целый ряд факторов, влияющих на толщину покрытия, формирующегося при переносе на подложку вещества при ее окунании в раствор и последующем извлечении, достаточно условно можно употреблять термины однослойное, двухслойное покрытия (см. стр. 89, 98); более корректно говорить об общей толщине покрытия;
- целесообразно было изучить химический состав синтезированных образцов на предмет оценки полноты удаления из их состава органических компонентов;
- в списке цитируемой литературы желательно давать ссылки на языке оригинала (см., например, ссылки №№ 16, 20, 21, 25 – 27, 86, 99, 100, 135, 136, 243 и т.д.);

Отмеченные замечания не снижают, в целом, положительного мнения о диссертационной работе, не влияют на достоверность полученных результатов.

Опубликованные работы и автореферат в достаточной степени отражают содержание проведенных исследований и полученные результаты.

Таким образом, диссертация Николаева В.А. является законченной научно-квалификационной работой, в ходе выполнения которой разработаны подходы к получению с использованием золь-гель процесса дисперсных, пленочных и композиционных неорганических наноструктурированных материалов на основе оксида и карбита титана. Диссертация соответствует паспорту специальности 02.00.01, а полученные результаты вносят вклад в развитие методов синтеза неорганических соединений различными способами, изучение их строения, химических превращений и свойств физико-химическими методами.

Считаю, что диссертационная работа Николаева В.А. «Золь-гель синтез наноматериалов различного типа на основе диоксида и карбита титана», по своей актуальности, научной новизне, практической значимости и уровню представления полностью отвечает требованиям п. 9 положения «О порядке присуждения ученых степеней» утвержденного постановлением Правительства Российской Федерации от 24.09.2013 г. № 842 (в редакции от 30.07.2014 г.), предъявляемым к
диссертационным работам, а ее автор Николаев Валентин Александрович достоин присуждения ученой степени кандидата химических наук по специальности 02.00.01 – неорганическая химия.

Заведующий кафедрой химической нанотехнологии и материалов электронной техники Санкт-Петербургского государственного технологического института (технического университета) доктор химических наук профессор

Рабочий адрес: 190013, г. Санкт-Петербург, Московский проспект, д. 28, СПбГТИ (ТУ)
malygin@lti-gti.ru
раб. тел. (812) 494 92 39

25 мая 2018 г.

А.А. Малыгин
Сведения об оппоненте
по диссертационной работе Николаева Виталия Александровича на тему «Золь-гель синтез наноматериалов различного типа на основе диоксида и карбида титана» представленной на соискание ученой степени кандидата химических наук
по специальности 02.00.01 — неорганическая химия

<table>
<thead>
<tr>
<th>Фамилия Имя Отчество оппонента</th>
<th>Мальгин Анатолий Алексеевич</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шифр и наименование специальностей, по которым защищена диссертация</td>
<td>02.00.18- Химия и физика поверхности</td>
</tr>
<tr>
<td>Ученая степень и отрасль науки</td>
<td>Доктор химических наук</td>
</tr>
<tr>
<td>Ученое звание</td>
<td>Профессор</td>
</tr>
<tr>
<td>Полное наименование организации, являющейся основным местом работы оппонента</td>
<td>Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»</td>
</tr>
<tr>
<td>Подразделение</td>
<td>Кафедра химической нанотехнологии и материалов электронной техники</td>
</tr>
<tr>
<td>Занимаемая должность</td>
<td>Заведующий кафедрой</td>
</tr>
<tr>
<td>Почтовый индекс, адрес</td>
<td>190013, Санкт-Петербург, Московский проспект, дом 26</td>
</tr>
<tr>
<td>Телефон</td>
<td>8 (812) 494-92-39</td>
</tr>
<tr>
<td>Адрес электронной почты</td>
<td>malygin@lti-gti.ru</td>
</tr>
</tbody>
</table>

Список основных публикаций официального оппонента по теме диссертации в рецензируемых научных изданиях за последние 5 лет (не более 15 публикаций)

Малыгин А.А.

Подпись Малыгина А.А. заверяю

Начальник отдела кадров

Г.Ю. Прохорова

М.П.